计算机视觉研究院专栏 作者:Edison_G 利用持续学习中梯度缩放控制的方法,北大、北邮、字节跳动提出的新方法相比经典算法在参数量降低近 20 倍的同时,运算速度提升了 4 倍。 一、
计算机视觉研究院专栏
作者:Edison_G
利用持续学习中梯度缩放控制的方法,北大、北邮、字节跳动提出的新方法相比经典算法在参数量降低近 20 倍的同时,运算速度提升了 4 倍。
一、简介
二、训练框架设计
三、模型结构及损失函数设计
四、实验
计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!
计算机视觉研究院
公众号ID|ComputerVisionGzq
学习群|扫码在主页获取加入方式
论文源码获取|回复“GRM”获取论文及源代码
【来源:国外高防服务器 http://www.558idc.com/stgf.html 欢迎留下您的宝贵建议】