思路: 区间dp。 实现: 1 class Solution 2 { 3 public : 4 int mctFromLeafValues(vector int arr) 5 { 6 int n = arr.size(); 7 vectorvector int maxn(n, vector int (n, 0 )); 8 for ( int i = n - 1 ; i = 0 ; i-- ) 9 { 10 for ( int j = i;
思路:
区间dp。
实现:
1 class Solution 2 { 3 public: 4 int mctFromLeafValues(vector<int>& arr) 5 { 6 int n = arr.size(); 7 vector<vector<int>> maxn(n, vector<int>(n, 0)); 8 for (int i = n - 1; i >= 0; i--) 9 { 10 for (int j = i; j < n; j++) 11 { 12 if (j == i) maxn[i][j] = arr[i]; 13 else 14 { 15 maxn[i][j] = max(maxn[i][j - 1], arr[j]); 16 } 17 } 18 } 19 vector<vector<int>> dp(n, vector<int>(n, INT_MAX)); 20 for (int i = n - 1; i >= 0; i--) 21 { 22 for (int j = i; j < n; j++) 23 { 24 if (j == i) dp[i][j] = arr[i]; 25 else if (j == i + 1) dp[i][j] = arr[i] * arr[j]; 26 else 27 { 28 dp[i][j] = min(dp[i][j], dp[i + 1][j] + arr[i] * maxn[i + 1][j]); 29 dp[i][j] = min(dp[i][j], dp[i][j - 1] + arr[j] * maxn[i][j - 1]); 30 for (int k = i + 1; k < j - 1; k++) 31 { 32 dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + maxn[i][k] * maxn[k + 1][j]); 33 } 34 } 35 } 36 } 37 return dp[0][n - 1]; 38 } 39 }