2019 杭电多校 1 1013
题目链接:HDU 6590
比赛链接:2019 Multi-University Training Contest 1
Problem Description
After returning with honour from ICPC(International Cat Programming Contest) World Finals, Tom decides to say goodbye to ICPC and start a new period of life. He quickly gets interested in AI.
In the subject of Machine Learning, there is a classical classification model called perceptron, defined as follows:
Assuming we get a set of training samples: \(D={(\boldsymbol{x_1},y_1),(\boldsymbol{x_2},y_2),...,(\boldsymbol{x_N},y_N)}\), with their inputs \(\boldsymbol{x}\in \mathbb{R}^d\), and outputs \(y\in \{?1,1\}\). We will try to find a function \(f(\boldsymbol{x})=sign(\sum_{i=1}^d w_i\cdot x_i+b)=sign(\boldsymbol{w^T} \cdot \boldsymbol{x}+b)\) so that \(f(\boldsymbol{x_i})=y_i,i=1,2,...,N\).
\(\boldsymbol{w}, \boldsymbol{x}\) mentioned above are all d-dimensional vectors, i.e. \(\boldsymbol{w}=(w_1,w_2,...,w_d), \boldsymbol{x}=(x_1,x_2,...,x_d)\). To simplify the question, let \(w_0=b\), \(x_0=1\), then \(f(\boldsymbol{x})=sign(\sum_{i = 0}^d w_i\cdot x_i)=sign(\boldsymbol{w^T}\cdot \boldsymbol{x})\). Therefore, finding a satisfying function \(f(\boldsymbol{x})\) is equivalent to finding a proper \boldsymbol{w}.
To solve the problem, we have a algorithm, PLA(Popcorn Label Algorithm).
Accoding to PLA, we will randomly generate \(\boldsymbol{w}\).
If \(f(\boldsymbol{x})=sign(\boldsymbol{w^T}\cdot \boldsymbol{x})\) fails to give any element \((\boldsymbol{x_i},y_i)\in D\) the right classification, i.e. \(f(\boldsymbol{x_i})\neq y_i\), then we will replace \(w\) with another random vector. We will do this repeatedly until all the samples \(\in D\) are correctly classified.
As a former-JBer, Tom excels in programming and quickly wrote the pseudocode of PLA.
w := a random vector while true do flag:=true for i:=1 to N do if f(x[ i ]) != y[ i ] then flag:=false break if flag then break else w := a random vector return wBut Tom found that, in some occasions, PLA will end up into an infinite loop, which confuses him a lot. You are required to help Tom determine, when performed on a given sample set \(D\), if PLA will end up into an infinite loop. Print Infinite loop! if so, or Successful! otherwise.
We only consider cases when \(d=2\) for simplification.
Note:
\[sign(x)= \begin{cases} -1& x < 0 \\ 0& x = 0 \\ 1& x > 0 \end{cases}\]
Input
The first line contains an integer \(T(1\le T\le 1000)\), the number of test cases.
Each test case begins with a line containing a single integer \(n(1\le n\le 100)\), size of the set of training samples \(D\).
Then \(n\) lines follow, the ith of which contains three integers \(x_{i,1},x_{i,2},y_i (?10^5\le x_{i,1},x_{i,2}\le 10^5, y_i\in {?1,1})\), indicating the ith sample \((x_i,y_i)\) in \(D\), where \(x_i=(x_{i,1},x_{i,2})\).
Output
For each test case, output a single line containing the answer: “Infinite loop!” or “Successful!”.
Sample Input
3 2 1 1 1 2 0 -1 4 0 0 1 2 0 -1 1 1 1 1 -1 -1 6 0 0 1 2 0 -1 1 1 1 1 -1 -1 1 0 1 0 1 -1
Sample Output
Successful! Successful! Infinite loop!
Solution
题意
给出两类点的坐标,问能否用一条直线将两类点分开。
题解
题目看懂了就很好做了。
就是分别对两类点求凸包,然后判断两个凸包是否相交。若不相交,则能够用一条直线分开两类点,否则不能。
其实就是判断凸包是否相交的模板题。
类似的题目有:
- UVA 10256 The Great Divide
- POJ 3805 Separate Points
Code
#include <bits/stdc++.h> using namespace std; const double eps = 1e-8; const double pi = acos(-1.0); class Point { public: double x, y; Point(double x = 0, double y = 0) : x(x), y(y) {} Point operator+(Point a) { return Point(a.x + x, a.y + y); } Point operator-(Point a) { return Point(x - a.x, y - a.y); } bool operator<(const Point &a) const { if (x == a.x) return y < a.y; return x < a.x; } bool operator==(const Point &a) const { if (fabs(x - a.x) < eps && fabs(y - a.y) < eps) return 1; return 0; } double length() { return sqrt(x * x + y * y); } }; typedef Point Vector; double cross(Vector a, Vector b) { return a.x * b.y - a.y * b.x; } double dot(Vector a, Vector b) { return a.x * b.x + a.y * b.y; } bool isclock(Point p0, Point p1, Point p2) { Vector a = p1 - p0; Vector b = p2 - p0; if (cross(a, b) < -eps) return true; return false; } double getDistance(Point a, Point b) { return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2)); } typedef vector<Point> Polygon; Polygon Andrew(Polygon s) { Polygon u, l; if(s.size() < 3) return s; sort(s.begin(), s.end()); u.push_back(s[0]); u.push_back(s[1]); l.push_back(s[s.size() - 1]); l.push_back(s[s.size() - 2]); for(int i = 2 ; i < s.size() ; ++i) { for(int n = u.size() ; n >= 2 && !isclock(u[n - 2], u[n - 1], s[i]); --n) { u.pop_back(); } u.push_back(s[i]); } for(int i = s.size() - 3 ; i >= 0 ; --i) { for(int n = l.size() ; n >=2 && !isclock(l[n-2],l[n-1],s[i]); --n) { l.pop_back(); } l.push_back(s[i]); } for(int i = 1 ; i < u.size() - 1 ; i++) l.push_back(u[i]); return l; } int dcmp(double x) { if (fabs(x) <= eps) return 0; return x > 0 ? 1 : -1; } // 判断点在线段上 bool OnSegment(Point p, Point a1, Point a2) { return dcmp(cross(a1 - p, a2 - p)) == 0 && dcmp(dot(a1 - p, a2 - p)) < 0; } // 判断线段相交 bool Intersection(Point a1, Point a2, Point b1, Point b2) { double c1 = cross(a2 - a1, b1 - a1), c2 = cross(a2 - a1, b2 - a1), c3 = cross(b2 - b1, a1 - b1), c4 = cross(b2 - b1, a2 - b1); return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } // 判断点在凸包内 int isPointInPolygon(Point p, vector<Point> s) { int wn = 0, cc = s.size(); for (int i = 0; i < cc; i++) { Point p1 = s[i]; Point p2 = s[(i + 1) % cc]; if (p1 == p || p2 == p || OnSegment(p, p1, p2)) return -1; int k = dcmp(cross(p2 - p1, p - p1)); int d1 = dcmp(p1.y - p.y); int d2 = dcmp(p2.y - p.y); if (k > 0 && d1 <= 0 && d2 > 0) wn++; if (k < 0 && d2 <= 0 && d1 > 0) wn--; } if (wn != 0) return 1; return 0; } void solve(Polygon s1, Polygon s2) { int c1 = s1.size(), c2 = s2.size(); for(int i = 0; i < c1; ++i) { if(isPointInPolygon(s1[i], s2)) { printf("Infinite loop!\n"); return; } } for(int i = 0; i < c2; ++i) { if(isPointInPolygon(s2[i], s1)) { printf("Infinite loop!\n"); return; } } for (int i = 0; i < c1; i++) { for (int j = 0; j < c2; j++) { if (Intersection(s1[i], s1[(i + 1) % c1], s2[j], s2[(j + 1) % c2])) { printf("Infinite loop!\n"); return; } } } printf("Successful!\n"); } int main() { int T; cin >> T; while (T--) { int n; scanf("%d", &n); Polygon s1, s2; for (int i = 0; i < n; ++i) { double x1, x2, y; scanf("%lf%lf%lf", &x1, &x2, &y); if(y == 1) { s1.push_back(Point(x1, x2)); } else { s2.push_back(Point(x1, x2)); } } if(n == 1) { printf("Successful!\n"); continue; } if(s1.size()) s1 = Andrew(s1); if(s2.size()) s2 = Andrew(s2); solve(s1, s2); } return 0; }