Given a string s , partition s such that every substring of the partition is a palindrome. Return the minimum cuts needed for a palindrome partitioning of s . Example: Input:"aab"Output: 1Explanation: The palindrome partitioning ["aa","b"]
Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
Example:
Input: "aab" Output: 1 Explanation: The palindrome partitioning ["aa","b"] could be produced using 1 cut.
这个题目利用了两个dynamic programming的方式,先预处理s,得到所有substring的Palindrome表,T: O(n^2), S: O(n^2). 因为判断一个string是否为palindrome可以根据把首尾字母去掉之后的substring是否为palindrome,如果是,在判断首尾两个字母是否相等。如果不用dynamic programming可能会到T: O(n^3) 这个时间复杂度。
所以先从length小的来遍历一遍之后再依次遍历更长的substring,所以两个for loop要先loop length,然后再loop start position。
然后再通过mem[i] 去记录前i个字符的最小cut 的数量,为了方便for loop,因为要判断后面的substring是否为palindrome,如果是的话就+1, 这个时候会碰到如果从第一个字母到substring的最后一个字母是palindrome,结果应该是0, 但是前面加1了,所以需要用长度为n + 1 的mem去记录,初始化mem[0] = -1. 这里需要注意下标,因为在Palin的表格里面,下标就是s的下标,而mem中的下标是前n个字符。
Code:
class Solution: def minCut(self, s): if not s or len(s) == 1: return 0 n = len(s) # pre deal with the Palindrome table palin = [[False]*n for _ in range(n)] for i in range(n): palin[i][i] = True for i in range(n - 1): palin[i][i + 1] = s[i] == s[i + 1] for l in range(2, n): # 下标是s的下标,所以是n for start in range(0, n - l): # s + l < n palin[start][start + l] = palin[start + 1][start + l - 1] and s[start] == s[start + l] # deal with the mem array mem = list(range(-1, n)) # if in python 3, range is an iterator for i in range(2, n + 1): # need to go to mem[n] which presents the first n characters for j in range(0, i): if palin[j][i - 1]: # i will be n, but palin is n * n mem[i] = min(mem[i], mem[j] + 1) return mem[n]