当前位置 : 主页 > 编程语言 > java >

浅析Spring Boot单体应用熔断技术的使用

来源:互联网 收集:自由互联 发布时间:2021-04-03
壹、入围方案 Sentinel github地址:https://sentinelguard.io/zh-cn/docs/introduction.html 阿里出品,Spring Cloud Alibaba限流组件,目前持续更新中 自带Dashboard,可以查看接口Qps等,并且可以动态修改各种

壹、入围方案

Sentinel

  • github地址:https://sentinelguard.io/zh-cn/docs/introduction.html
  • 阿里出品,Spring Cloud Alibaba限流组件,目前持续更新中
  • 自带Dashboard,可以查看接口Qps等,并且可以动态修改各种规则
  • 流量控制,直接限流、冷启动、排队
  • 熔断降级,限制并发限制数和相应时间
  • 系统负载保护,提供系统级别防护,限制总体CPU等
  • 主要核心:资源,规则(流量控制规则、熔断降级规则、系统保护规则、来源访问控制规则 和 热点参数规则。),和指标
  • 文档非常清晰和详细,中文
  • 支持动态规则(推模式和拉模式)

Hystrix

  • github地址:https://github.com/Netflix/Hystrix/wiki
  • Netflix出品,Spring Cloud Netflix限流组件,已经停止新特性开发,只进行bug修复,最近更新为2018年,功能稳定
  • 有简单的dashboard页面
  • 以隔离和熔断为主的容错机制,超时或被熔断的调用将会快速失败,并可以提供 fallback 机制的初代熔断框架,异常统计基于滑动窗口

resilience4j

  • github地址:https://resilience4j.readme.io/docs
  • 是一款轻量、简单,并且文档非常清晰、丰富的熔断工具。是Hystrix替代品,实现思路和Hystrix一致,目前持续更新中
  • 需要自己对micrometer、prometheus以及Dropwizard metrics进行整合
  • CircuitBreaker 熔断
  • Bulkhead 隔离
  • RateLimiter QPS限制
  • Retry 重试
  • TimeLimiter 超时限制
  • Cache 缓存

自己实现(基于Guava)

  • 基于Guava的令牌桶,可以轻松实现对QPS进行限流

贰、技术对比

叁、应用改造

3.1、sentinel

3.1.1、引入依赖

<dependency>
  <groupId>com.alibaba.cloud</groupId>
  <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
  <version>2.0.3.RELEASE</version>
</dependency>

3.1.2、改造接口或者service层

@SentinelResource(value = "allInfos",fallback = "errorReturn")

@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Inherited
public @interface SentinelResource {
  //资源名称
  String value() default "";
 
  //流量方向
  EntryType entryType() default EntryType.OUT;
 
  //资源类型
  int resourceType() default 0;
 
  //异常处理方法
  String blockHandler() default "";
 
  //异常处理类
  Class<?>[] blockHandlerClass() default {};
 
  //熔断方法
  String fallback() default "";
 
  //默认熔断方法
  String defaultFallback() default "";
 
  //熔断类
  Class<?>[] fallbackClass() default {};
 
  //统计异常
  Class<? extends Throwable>[] exceptionsToTrace() default {Throwable.class};
 
  //忽略异常
  Class<? extends Throwable>[] exceptionsToIgnore() default {};
}
@RequestMapping("/get")
@ResponseBody
@SentinelResource(value = "allInfos",fallback = "errorReturn")
public JsonResult allInfos(HttpServletRequest request, HttpServletResponse response, @RequestParam Integer num){
    try {
      if (num % 2 == 0) {
        log.info("num % 2 == 0");
        throw new BaseException("something bad with 2", 400);
      }
      return JsonResult.ok();
    } catch (ProgramException e) {
      log.info("error");
      return JsonResult.error("error");
    }
  }

3.1.3、针对接口配置熔断方法或者限流方法

默认过滤拦截所有Controller接口

/**
   * 限流,参数需要和方法保持一致
   * @param request
   * @param response
   * @param num
   * @return
   * @throws BlockException
   */
  public JsonResult errorReturn(HttpServletRequest request, HttpServletResponse response, @RequestParam Integer num) throws BlockException {
    return JsonResult.error("error 限流" + num );
  }
 
  /**
   * 熔断,参数需要和方法保持一直,并且需要添加BlockException异常
   * @param request
   * @param response
   * @param num
   * @param b
   * @return
   * @throws BlockException
   */
  public JsonResult errorReturn(HttpServletRequest request, HttpServletResponse response, @RequestParam Integer num,BlockException b) throws BlockException {
    return JsonResult.error("error 熔断" + num );
  }

注意也可以不配置限流或者熔断方法。通过全局异常去捕获UndeclaredThrowableException或者BlockException避免大量的开发量

3.1.4、接入dashboard

spring:
 cloud:
  sentinel:
   transport:
    port: 8719
    dashboard: localhost:8080

3.1.5、规则持久化和动态更新

接入配置中心如:zookeeper等等,并对规则采用推模式

3.2、hystrix

3.2.1、引入依赖

<dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-starter-netflix-hystrix-dashboard</artifactId>
  <version>2.0.4.RELEASE</version>
</dependency>
<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
  <version>2.0.4.RELEASE</version>
</dependency>

3.2.2、改造接口

@HystrixCommand(fallbackMethod = "timeOutError")

@Target({ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@Inherited
@Documented
public @interface HystrixCommand {
  String groupKey() default "";
 
  String commandKey() default "";
 
  String threadPoolKey() default "";
 
  String fallbackMethod() default "";
 
  HystrixProperty[] commandProperties() default {};
 
  HystrixProperty[] threadPoolProperties() default {};
 
  Class<? extends Throwable>[] ignoreExceptions() default {};
 
  ObservableExecutionMode observableExecutionMode() default ObservableExecutionMode.EAGER;
 
  HystrixException[] raiseHystrixExceptions() default {};
 
  String defaultFallback() default "";
}
@RequestMapping("/get")
@ResponseBody
@HystrixCommand(fallbackMethod = "fallbackMethod")
public JsonResult allInfos(HttpServletRequest request, HttpServletResponse response, @RequestParam Integer num){
  try {
    if (num % 3 == 0) {
      log.info("num % 3 == 0");
      throw new BaseException("something bad whitch 3", 400);
    }
 
    return JsonResult.ok();
  } catch (ProgramException | InterruptedException exception) {
    log.info("error");
    return JsonResult.error("error");
  }
}

3.2.3、针对接口配置熔断方法

/**
 * 该方法是熔断回调方法,参数需要和接口保持一致
 * @param request
 * @param response
 * @param num
 * @return
 */
public JsonResult fallbackMethod(HttpServletRequest request, HttpServletResponse response, @RequestParam Integer num) {
  response.setStatus(500);
  log.info("发生了熔断!!");
  return JsonResult.error("熔断");
}

3.2.4、配置默认策略

hystrix:
 command:
  default:
   execution:
    isolation:
     strategy: THREAD
     thread:
      # 线程超时15秒,调用Fallback方法
      timeoutInMilliseconds: 15000
   metrics:
    rollingStats:
     timeInMilliseconds: 15000
   circuitBreaker:
    # 10秒内出现3个以上请求(已临近阀值),并且出错率在50%以上,开启断路器.断开服务,调用Fallback方法
    requestVolumeThreshold: 3
    sleepWindowInMilliseconds: 10000

3.2.5、接入监控

曲线:用来记录2分钟内流量的相对变化,我们可以通过它来观察到流量的上升和下降趋势。

集群监控需要用到注册中心

3.3、resilience4j

3.3.1、引入依赖

dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-web</artifactId>
</dependency>
 
<dependency>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-test</artifactId>
  <scope>test</scope>
</dependency>
 
<dependency>
  <groupId>io.github.resilience4j</groupId>
  <artifactId>resilience4j-spring-boot2</artifactId>
  <version>1.6.1</version>
</dependency>
 
<dependency>
  <groupId>io.github.resilience4j</groupId>
  <artifactId>resilience4j-bulkhead</artifactId>
  <version>1.6.1</version>
</dependency>
 
<dependency>
  <groupId>io.github.resilience4j</groupId>
  <artifactId>resilience4j-ratelimiter</artifactId>
  <version>1.6.1</version>
</dependency>
 
<dependency>
  <groupId>io.github.resilience4j</groupId>
  <artifactId>resilience4j-timelimiter</artifactId>
  <version>1.6.1</version>
</dependency>

可以按需要引入:bulkhead,ratelimiter,timelimiter等

3.3.2、改造接口

@RequestMapping("/get")
@ResponseBody
//@TimeLimiter(name = "BulkheadA",fallbackMethod = "fallbackMethod")
@CircuitBreaker(name = "BulkheadA",fallbackMethod = "fallbackMethod")
@Bulkhead(name = "BulkheadA",fallbackMethod = "fallbackMethod")
public JsonResult allInfos(HttpServletRequest request, HttpServletResponse response, @RequestParam Integer num){
  log.info("param----->" + num);
  try {
    //Thread.sleep(num);
 
    if (num % 2 == 0) {
      log.info("num % 2 == 0");
      throw new BaseException("something bad with 2", 400);
    }
 
    if (num % 3 == 0) {
      log.info("num % 3 == 0");
      throw new BaseException("something bad whitch 3", 400);
    }
 
    if (num % 5 == 0) {
      log.info("num % 5 == 0");
      throw new ProgramException("something bad whitch 5", 400);
    }
    if (num % 7 == 0) {
      log.info("num % 7 == 0");
      int res = 1 / 0;
    }
    return JsonResult.ok();
  } catch (BufferUnderflowException e) {
    log.info("error");
    return JsonResult.error("error");
  }
}

3.3.3、针对接口配置熔断方法

/**
 * 需要参数一致,并且加上相应异常
 * @param request
 * @param response
 * @param num
 * @param exception
 * @return
 */
public JsonResult fallbackMethod(HttpServletRequest request, HttpServletResponse response, @RequestParam Integer num, BulkheadFullException exception) {
  return JsonResult.error("error 熔断" + num );
}

3.3.4、配置规则

resilience4j.circuitbreaker:
  instances:
    backendA:
      registerHealthIndicator: true
      slidingWindowSize: 100
    backendB:
      registerHealthIndicator: true
      slidingWindowSize: 10
      permittedNumberOfCallsInHalfOpenState: 3
      slidingWindowType: TIME_BASED
      minimumNumberOfCalls: 20
      waitDurationInOpenState: 50s
      failureRateThreshold: 50
      eventConsumerBufferSize: 10
      recordFailurePredicate: io.github.robwin.exception.RecordFailurePredicate
 
resilience4j.retry:
  instances:
    backendA:
      maxRetryAttempts: 3
      waitDuration: 10s
      enableExponentialBackoff: true
      exponentialBackoffMultiplier: 2
      retryExceptions:
        - org.springframework.web.client.HttpServerErrorException
        - java.io.IOException
      ignoreExceptions:
        - io.github.robwin.exception.BusinessException
    backendB:
      maxRetryAttempts: 3
      waitDuration: 10s
      retryExceptions:
        - org.springframework.web.client.HttpServerErrorException
        - java.io.IOException
      ignoreExceptions:
        - io.github.robwin.exception.BusinessException
 
resilience4j.bulkhead:
  instances:
    backendA:
      maxConcurrentCalls: 10
    backendB:
      maxWaitDuration: 10ms
      maxConcurrentCalls: 20
 
resilience4j.thread-pool-bulkhead:
 instances:
  backendC:
   maxThreadPoolSize: 1
   coreThreadPoolSize: 1
   queueCapacity: 1
 
resilience4j.ratelimiter:
  instances:
    backendA:
      limitForPeriod: 10
      limitRefreshPeriod: 1s
      timeoutDuration: 0
      registerHealthIndicator: true
      eventConsumerBufferSize: 100
    backendB:
      limitForPeriod: 6
      limitRefreshPeriod: 500ms
      timeoutDuration: 3s
 
resilience4j.timelimiter:
  instances:
    backendA:
      timeoutDuration: 2s
      cancelRunningFuture: true
    backendB:
      timeoutDuration: 1s
      cancelRunningFuture: false

配置的规则可以被代码覆盖

3.3.5、配置监控

如grafana等

肆、关注点

  • 是否需要过滤部分异常
  • 是否需要全局默认规则
  • 可能需要引入其他中间件
  • k8s流量控制
  • 规则存储和动态修改
  • 接入改造代价

【后面的话】

个人建议的话,比较推荐sentinel,它提供了很多接口便于开发者自己拓展,同时我觉得他的规则动态更新也比较方便。最后是相关示例代码:单体应用示例代码

以上就是浅析Spring Boot单体应用熔断技术的使用的详细内容,更多关于Spring Boot单体应用熔断技术的资料请关注易盾网络其它相关文章!

网友评论