当前位置 : 主页 > 网络推广 > seo >

snownlp类库(情感分析)源码解析

来源:互联网 收集:自由互联 发布时间:2021-06-16
最近发现了snownlp这个库,这个类库是专门针对中文文本进行文本挖掘的。 主要功能: 中文分词(Character-Based Generative Model) 词性标注(TnT3-gram 隐马) 情感分析(现在训练数据主要是

最近发现了snownlp这个库,这个类库是专门针对中文文本进行文本挖掘的。

主要功能:

  • 中文分词(Character-Based Generative Model)
  • 词性标注(TnT 3-gram 隐马)
  • 情感分析(现在训练数据主要是买卖东西时的评价,所以对其他的一些可能效果不是很好,待解决)
  • 文本分类(Naive Bayes)
  • 转换成拼音(Trie树实现的最大匹配)
  • 繁体转简体(Trie树实现的最大匹配)
  • 提取文本关键词(TextRank算法)
  • 提取文本摘要(TextRank算法)
  • tf,idf
  • Tokenization(分割成句子)
  • 文本相似(BM25)
  • 支持python3(感谢erning)

官网信息:

snownlp github:https://github.com/isnowfy/snownlp

使用及源码分析:

使用snownlp进行情感分析:

from snownlp import SnowNLP
 
#创建snownlp对象,设置要测试的语句
s = SnowNLP(这东西不错。。)
# 调用sentiments方法获取积极情感概率
print(s.sentiments)

实现过程:

1.首先从SnowNLP入手,看一下sentiments方法,在sentiments方法中,调用了sentiment下的分类方法。

# -*- coding: utf-8 -*-
from __future__ import unicode_literals
 
from . import normal
from . import seg
from . import tag
from . import sentiment
from .sim import bm25
from .summary import textrank
from .summary import words_merge
 
 
class SnowNLP(object):
 
    def __init__(self, doc):
        self.doc = doc
        self.bm25 = bm25.BM25(doc)
 
    @property
    def words(self):
        return seg.seg(self.doc)
 
    @property
    def sentences(self):
        return normal.get_sentences(self.doc)
 
    @property
    def han(self):
        return normal.zh2hans(self.doc)
 
    @property
    def pinyin(self):
        return normal.get_pinyin(self.doc)
 
    @property
    def sentiments(self):
        return sentiment.classify(self.doc)#调用了sentiment的classify分类方法
 
    @property
    def tags(self):
        words = self.words
        tags = tag.tag(words)
        return zip(words, tags)
 
    @property
    def tf(self):
        return self.bm25.f
 
    @property
    def idf(self):
        return self.bm25.idf
 
    def sim(self, doc):
        return self.bm25.simall(doc)
 
    def summary(self, limit=5):
        doc = []
        sents = self.sentences
        for sent in sents:
            words = seg.seg(sent)
            words = normal.filter_stop(words)
            doc.append(words)
        rank = textrank.TextRank(doc)
        rank.solve()
        ret = []
        for index in rank.top_index(limit):
            ret.append(sents[index])
        return ret
 
    def keywords(self, limit=5, merge=False):
        doc = []
        sents = self.sentences
        for sent in sents:
            words = seg.seg(sent)
            words = normal.filter_stop(words)
            doc.append(words)
        rank = textrank.KeywordTextRank(doc)
        rank.solve()
        ret = []
        for w in rank.top_index(limit):
            ret.append(w)
        if merge:
            wm = words_merge.SimpleMerge(self.doc, ret)
            return wm.merge()
        return ret

2.sentiment文件夹下的__init__文件

sentiment中创建了Sentiment对象

首先调用load方法加载训练好的数据字典,然后调用classify方法,在classify方法中实际调用的是Bayes对象中的classify方法。

# -*- coding: utf-8 -*-
from __future__ import unicode_literals
 
import os
import codecs
 
from .. import normal
from .. import seg
from ..classification.bayes import Bayes
 
#数据文件路径
data_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                         sentiment.marshal)
 
 
class Sentiment(object):
 
    def __init__(self):
        #创建Bayes对象
        self.classifier = Bayes()
 
    #保存训练好的字典数据
    def save(self, fname, iszip=True):
        self.classifier.save(fname, iszip)
 
    #加载字典数据
    def load(self, fname=data_path, iszip=True):
        self.classifier.load(fname, iszip)
 
    #对文档分词
    def handle(self, doc):
        words = seg.seg(doc)
        words = normal.filter_stop(words)
        return words
 
    # 训练数据集
    def train(self, neg_docs, pos_docs):
        data = []
        #读取消极评论list,同时为每条评论加上neg标签,也放入到一个list中
        for sent in neg_docs:
            data.append([self.handle(sent), neg])
        #读取积极评论list,为每条评论加上pos标签
        for sent in pos_docs:
            data.append([self.handle(sent), pos])
        #调用分类器的训练数据集方法,对模型进行训练
        self.classifier.train(data)
 
    #分类
    def classify(self, sent):
        #调用贝叶斯分类器的分类方法,获取分类标签和概率
        ret, prob = self.classifier.classify(self.handle(sent))
        #如果分类标签是pos直接返回概率值
        if ret == pos:
            return prob
        #如果返回的是neg,由于显示的是积极概率值,因此用1减去消极概率值
        return 1-prob
 
 
classifier = Sentiment()
classifier.load()
 
#训练数据
def train(neg_file, pos_file):
    #打开消极数据文件
    neg = codecs.open(neg_file, r, utf-8).readlines()
    pos = codecs.open(pos_file, r, utf-8).readlines()
    neg_docs = []
    pos_docs = []
    #遍历每一条消极评论,放入到list中
    for line in neg:
        neg_docs.append(line.rstrip("\r\n"))
    #遍历每一条积极评论,放入到list中
    for line in pos:
        pos_docs.append(line.rstrip("\r\n"))
    global classifier
    classifier = Sentiment()
    #训练数据,传入积极、消极评论list
    classifier.train(neg_docs, pos_docs)
 
#保存数据字典
def save(fname, iszip=True):
    classifier.save(fname, iszip)
 
#加载数据字典
def load(fname, iszip=True):
    classifier.load(fname, iszip)
 
#对语句进行分类
def classify(sent):
    return classifier.classify(sent)

sentiment中包含了训练数据集的方法,看一下是如何训练数据集的:
在sentiment文件夹下,包含了以下文件:

neg.txt和pos.txt是已经分类好的评论数据,neg.txt中都是消极评论,pos中是积极评论

sentiment.marshal和sentiment.marshal.3中存放的是序列化后的数据字典,这个也稍后再说

(1)在train()方法中,首先读取消极和积极评论txt文件,然后获取每一条评论,放入到list集合中,格式大致如下

[ ‘ 还没有收到书!!!还没有收到书 ‘ , ‘ 小熊宝宝我觉得孩子不喜欢,能换别的吗 ‘ , ......]

#训练数据
def train(neg_file, pos_file):
    #打开消极数据文件
    neg = codecs.open(neg_file, r, utf-8).readlines()
    pos = codecs.open(pos_file, r, utf-8).readlines()
    neg_docs = []
    pos_docs = []
    #遍历每一条消极评论,放入到list中
    for line in neg:
        neg_docs.append(line.rstrip("\r\n"))
    #遍历每一条积极评论,放入到list中
    for line in pos:
        pos_docs.append(line.rstrip("\r\n"))
    global classifier
    classifier = Sentiment()
    #训练数据,传入积极、消极评论list
    classifier.train(neg_docs, pos_docs)

然后调用了Sentiment对象中的train()方法:
在train方法中,遍历了传入的积极、消极评论list,为每条评论进行分词,并为加上了分类标签,此时的数据格式如下:

评论分词后的数据格式:[‘收到‘,‘没有‘...]

加上标签后的数据格式(以消极评论为例):[ [[‘收到‘,‘没有‘ ...],‘neg‘] ,  [[‘小熊‘,‘宝宝‘ ...],‘neg’] ........]]

可以看到每一条评论都是一个list,其中又包含了评论分词后的list和评论的分类标签

# 训练数据集
    def train(self, neg_docs, pos_docs):
        data = []
        #读取消极评论list,对每条评论分词,并加上neg标签,也放入到一个list中
        for sent in neg_docs:
            data.append([self.handle(sent), neg])
        #读取积极评论list,为每条评论分词,加上pos标签
        for sent in pos_docs:
            data.append([self.handle(sent), pos])
        #调用分类器的训练数据集方法,对模型进行训练
        self.classifier.train(data)

经过了此步骤,已经对数据处理完毕,接下来就可以对数据进行训练

 3.classification下的bayes.py

# -*- coding: utf-8 -*-
from __future__ import unicode_literals
 
import sys
import gzip
import marshal
from math import log, exp
 
from ..utils.frequency import AddOneProb
 
 
class Bayes(object):
 
    def __init__(self):
        #标签数据对象
        self.d = {}
        #所有分类的词数之和
        self.total = 0
 
    #保存字典数据
    def save(self, fname, iszip=True):
        #创建对象,用来存储训练结果
        d = {}
        #添加total,也就是积极消极评论分词总词数
        d[total] = self.total
        #d为分类标签,存储每个标签的数据对象
        d[d] = {}
        for k, v in self.d.items():
            #k为分类标签,v为标签对应的所有分词数据,是一个AddOneProb对象
            d[d][k] = v.__dict__
        #这里判断python版本
        if sys.version_info[0] == 3:
            fname = fname + .3
        #这里可有两种方法可以选择进行存储
        if not iszip:
            ##将序列化后的二进制数据直接写入文件
            marshal.dump(d, open(fname, wb))
        else:
            #首先获取序列化后的二进制数据,然后写入文件
            f = gzip.open(fname, wb)
            f.write(marshal.dumps(d))
            f.close()
 
    #加载数据字典
    def load(self, fname, iszip=True):
        #判断版本
        if sys.version_info[0] == 3:
            fname = fname + .3
        #判断打开文件方式
        if not iszip:
            d = marshal.load(open(fname, rb))
        else:
            try:
                f = gzip.open(fname, rb)
                d = marshal.loads(f.read())
            except IOError:
                f = open(fname, rb)
                d = marshal.loads(f.read())
            f.close()
        #从文件中读取数据,为total和d对象赋值
        self.total = d[total]
        self.d = {}
        for k, v in d[d].items():
            self.d[k] = AddOneProb()
            self.d[k].__dict__ = v
 
    #训练数据集
    def train(self, data):
        #遍历数据集
        for d in data:
            #d[1]标签-->分类类别
            c = d[1]
            #判断数据字典中是否有当前的标签
            if c not in self.d:
                #如果没有该标签,加入标签,值是一个AddOneProb对象
                self.d[c] = AddOneProb()
            #d[0]是评论的分词list,遍历分词list
            for word in d[0]:
                #调用AddOneProb中的add方法,添加单词
                self.d[c].add(word, 1)
        #计算总词数
        self.total = sum(map(lambda x: self.d[x].getsum(), self.d.keys()))
 
    #贝叶斯分类
    def classify(self, x):
        tmp = {}
        #遍历每个分类标签
        for k in self.d:
            #获取每个分类标签下的总词数和所有标签总词数,求对数差相当于log(某标签下的总词数/所有标签总词数)
            tmp[k] = log(self.d[k].getsum()) - log(self.total)
            for word in x:
                #获取每个单词出现的频率,log[(某标签下的总词数/所有标签总词数)*单词出现频率]
                tmp[k] += log(self.d[k].freq(word))
        #计算概率,由于直接得到的概率值比较小,这里应该使用了一种方法来转换,原理还不是很明白
        ret, prob = 0, 0
        for k in self.d:
            now = 0
            try:
                for otherk in self.d:
                    now += exp(tmp[otherk]-tmp[k])
                now = 1/now
            except OverflowError:
                now = 0
            if now > prob:
                ret, prob = k, now
        return (ret, prob)
from . import good_turing
 
class BaseProb(object):
 
    def __init__(self):
        self.d = {}
        self.total = 0.0
        self.none = 0
 
    def exists(self, key):
        return key in self.d
 
    def getsum(self):
        return self.total
 
    def get(self, key):
        if not self.exists(key):
            return False, self.none
        return True, self.d[key]
 
    def freq(self, key):
        return float(self.get(key)[1])/self.total
 
    def samples(self):
        return self.d.keys()
 
 
class NormalProb(BaseProb):
 
    def add(self, key, value):
        if not self.exists(key):
            self.d[key] = 0
        self.d[key] += value
        self.total += value
 
 
class AddOneProb(BaseProb):
 
    def __init__(self):
        self.d = {}
        self.total = 0.0
        self.none = 1
 
    #添加单词
    def add(self, key, value):
        #更新该类别下的单词总数
        self.total += value
        #如果单词未出现过
        if not self.exists(key):
            #将单词加入对应标签的数据字典中,value设为1
            self.d[key] = 1
            #更新总词数
            self.total += 1
        #如果单词出现过,对该单词的value值加1
        self.d[key] += value

在bayes对象中,有两个属性d和total,d是一个数据字典,total存储所有分类的总词数,经过train方法训练数据集后,d中存储的是每个分类标签的数据key为分类标签,value是一个AddOneProb对象。

def __init__(self):
        self.d = {}
        self.total = 0.0

在AddOneProb对象中,同样存在d和total属性,这里的total存储的是每个分类各自的单词总数,d中存储的是所有出现过的单词,单词作为key,单词出现的次数作为value.
为了下次计算概率时,不用重新训练,可以将训练得到的数据序列化到文件中,下次直接加载文件,将文件反序列为对象,从对象中获取数据即可(save和load方法)。

4.得到训练数据后,使用朴素贝叶斯分类进行分类

该方法可自行查阅。

网友评论