当前位置 : 主页 > 编程语言 > java >

Java用BigDecimal类解决Double类型精度丢失的问题

来源:互联网 收集:自由互联 发布时间:2021-04-03
本篇要点 简单描述浮点数十进制转二进制精度丢失的原因。 介绍几种创建BigDecimal方式的区别。 整理了高精度计算的工具类。 学习了阿里巴巴Java开发手册关于BigDecimal比较相等的规定。

本篇要点

简单描述浮点数十进制转二进制精度丢失的原因。
介绍几种创建BigDecimal方式的区别。
整理了高精度计算的工具类。
学习了阿里巴巴Java开发手册关于BigDecimal比较相等的规定。

经典问题:浮点数精度丢失

精度丢失的问题是在其他计算机语言中也都会出现,float和double类型的数据在执行二进制浮点运算的时候,并没有提供完全精确的结果。产生误差不在于数的大小,而是因为数的精度。

关于浮点数存储精度丢失的问题,话题过于庞大,感兴趣的同学可以自行搜索一下:【解惑】剖析float型的内存存储和精度丢失问题

这里简单讨论一下十进制数转二进制为什么会出现精度丢失的现象,十进制数分为整数部分和小数部分,我们分开来看看就知道原因为何:

十进制整数如何转化为二进制整数?

将被除数每次都除以2,只要除到商为0就可以停止这个过程。

5 / 2 = 2 余 1
2 / 2 = 1 余 0
1 / 2 = 0 余 1 
 
// 结果为 101

这个算法永远都不会无限循环,整数永远都可以使用二进制数精确表示,但小数呢?

十进制小数如何转化为二进制数?

每次将小数部分乘2,取出整数部分,如果小数部分为0,就可以停止这个过程。

0.1 * 2 = 0.2 取整数部分0
0.2 * 2 = 0.4 取整数部分0
0.4 * 2 = 0.8 取整数部分0
0.8 * 2 = 1.6 取整数部分1
0.6 * 2 = 1.2 取整数部分1
0.2 * 2 = 0.4 取整数部分0 

//... 我想写到这就不必再写了,你应该也已经发现,上面的过程已经开始循环,小数部分永远不能为0

这个算法有一定概率会存在无限循环,即无法用有限长度的二进制数表示十进制的小数,这就是精度丢失问题产生的原因。

如何用BigDecimal解决double精度问题?

我们已经明白为什么精度会存在丢失现象,那么我们就应该知道,当某个业务场景对double数据的精度要求非常高时,就必须采取某种手段来处理这个问题,这也是BigDecimal为什么会被广泛应用于金额支付场景中的原因啦。

BigDecimal类位于java.math包下,用于对超过16位有效位的数进行精确的运算。一般来说,double类型的变量可以处理16位有效数,但实际应用中,如果超过16位,就需要BigDecimal类来操作。

既然这样,那用BigDecimal就能够很好解决这个问题咯?

 public static void main(String[] args) {
		// 方法1
  BigDecimal a = new BigDecimal(0.1);
  System.out.println("a --> " + a);
		// 方法2
  BigDecimal b = new BigDecimal("0.1");
  System.out.println("b --> " + b);
		// 方法3
  BigDecimal c = BigDecimal.valueOf(0.1);
  System.out.println("c --> " + c);
 }

你可以思考一下,控制台输出会是啥。

a --> 0.1000000000000000055511151231257827021181583404541015625
b --> 0.1
c --> 0.1

可以看到,使用方法一的构造函数仍然出现了精度丢失的问题,而方法二和方法三符合我们的预期,为什么会这样呢?

这三个方法其实对应着三种不同的构造函数:

 // 传入double
	public BigDecimal(double val) {
  this(val,MathContext.UNLIMITED);
 }
	// 传入string
 public BigDecimal(String val) {
  this(val.toCharArray(), 0, val.length());
 }

 public static BigDecimal valueOf(double val) {
  // Reminder: a zero double returns '0.0', so we cannot fastpath
  // to use the constant ZERO. This might be important enough to
  // justify a factory approach, a cache, or a few private
  // constants, later.
  // 可以看到实际上就是第二种
  return new BigDecimal(Double.toString(val));
 }

关于这三个构造函数,JDK已经给出了解释,并用Notes标注:

为了防止以后图片可能会存在显示问题,这里再记录一下:

new BigDecimal(double val)

该方法是不可预测的,以0.1为例,你以为你传了一个double类型的0.1,最后会返回一个值为0.1的BigDecimal吗?不会的,原因在于,0.1无法用有限长度的二进制数表示,无法精确地表示为双精度数,最后的结果会是0.100000xxx。

new BigDecimal(String val)

该方法是完全可预测的,也就是说你传入一个字符串"0.1",他就会给你返回一个值完全为0,1的BigDecimal,官方也表示,能用这个构造函数就用这个构造函数叭。

BigDecimal.valueOf(double val)

第二种构造方式已经足够优秀,可你还是想传入一个double值,怎么办呢?官方其实提供给你思路并且实现了它,可以使用Double.toString(double val)先将double值转为String,再调用第二种构造方式,你可以直接使用静态方法:valueOf(double val)。

Double的加减乘除运算工具类

BigDecimal所创建的是对象,故我们不能使用传统的+、-、*、/等算术运算符直接对其对象进行数学运算,而必须调用其相对应的方法。方法中的参数也必须是BigDecimal的对象。网上有很多这样的工具类,这边直接贴一下,逻辑不难,主要为了简化项目中频繁互相转化的问题。

/**
 * 用于高精确处理常用的数学运算
 */
public class ArithmeticUtils {
 //默认除法运算精度
 private static final int DEF_DIV_SCALE = 10;

 /**
  * 提供精确的加法运算
  *
  * @param v1 被加数
  * @param v2 加数
  * @return 两个参数的和
  */

 public static double add(double v1, double v2) {
  BigDecimal b1 = new BigDecimal(Double.toString(v1));
  BigDecimal b2 = new BigDecimal(Double.toString(v2));
  return b1.add(b2).doubleValue();
 }

 /**
  * 提供精确的加法运算
  *
  * @param v1 被加数
  * @param v2 加数
  * @return 两个参数的和
  */
 public static BigDecimal add(String v1, String v2) {
  BigDecimal b1 = new BigDecimal(v1);
  BigDecimal b2 = new BigDecimal(v2);
  return b1.add(b2);
 }

 /**
  * 提供精确的加法运算
  *
  * @param v1 被加数
  * @param v2 加数
  * @param scale 保留scale 位小数
  * @return 两个参数的和
  */
 public static String add(String v1, String v2, int scale) {
  if (scale < 0) {
   throw new IllegalArgumentException(
     "The scale must be a positive integer or zero");
  }
  BigDecimal b1 = new BigDecimal(v1);
  BigDecimal b2 = new BigDecimal(v2);
  return b1.add(b2).setScale(scale, BigDecimal.ROUND_HALF_UP).toString();
 }

 /**
  * 提供精确的减法运算
  *
  * @param v1 被减数
  * @param v2 减数
  * @return 两个参数的差
  */
 public static double sub(double v1, double v2) {
  BigDecimal b1 = new BigDecimal(Double.toString(v1));
  BigDecimal b2 = new BigDecimal(Double.toString(v2));
  return b1.subtract(b2).doubleValue();
 }

 /**
  * 提供精确的减法运算。
  *
  * @param v1 被减数
  * @param v2 减数
  * @return 两个参数的差
  */
 public static BigDecimal sub(String v1, String v2) {
  BigDecimal b1 = new BigDecimal(v1);
  BigDecimal b2 = new BigDecimal(v2);
  return b1.subtract(b2);
 }

 /**
  * 提供精确的减法运算
  *
  * @param v1 被减数
  * @param v2 减数
  * @param scale 保留scale 位小数
  * @return 两个参数的差
  */
 public static String sub(String v1, String v2, int scale) {
  if (scale < 0) {
   throw new IllegalArgumentException(
     "The scale must be a positive integer or zero");
  }
  BigDecimal b1 = new BigDecimal(v1);
  BigDecimal b2 = new BigDecimal(v2);
  return b1.subtract(b2).setScale(scale, BigDecimal.ROUND_HALF_UP).toString();
 }

 /**
  * 提供精确的乘法运算
  *
  * @param v1 被乘数
  * @param v2 乘数
  * @return 两个参数的积
  */
 public static double mul(double v1, double v2) {
  BigDecimal b1 = new BigDecimal(Double.toString(v1));
  BigDecimal b2 = new BigDecimal(Double.toString(v2));
  return b1.multiply(b2).doubleValue();
 }

 /**
  * 提供精确的乘法运算
  *
  * @param v1 被乘数
  * @param v2 乘数
  * @return 两个参数的积
  */
 public static BigDecimal mul(String v1, String v2) {
  BigDecimal b1 = new BigDecimal(v1);
  BigDecimal b2 = new BigDecimal(v2);
  return b1.multiply(b2);
 }

 /**
  * 提供精确的乘法运算
  *
  * @param v1 被乘数
  * @param v2 乘数
  * @param scale 保留scale 位小数
  * @return 两个参数的积
  */
 public static double mul(double v1, double v2, int scale) {
  BigDecimal b1 = new BigDecimal(Double.toString(v1));
  BigDecimal b2 = new BigDecimal(Double.toString(v2));
  return round(b1.multiply(b2).doubleValue(), scale);
 }

 /**
  * 提供精确的乘法运算
  *
  * @param v1 被乘数
  * @param v2 乘数
  * @param scale 保留scale 位小数
  * @return 两个参数的积
  */
 public static String mul(String v1, String v2, int scale) {
  if (scale < 0) {
   throw new IllegalArgumentException(
     "The scale must be a positive integer or zero");
  }
  BigDecimal b1 = new BigDecimal(v1);
  BigDecimal b2 = new BigDecimal(v2);
  return b1.multiply(b2).setScale(scale, BigDecimal.ROUND_HALF_UP).toString();
 }

 /**
  * 提供(相对)精确的除法运算,当发生除不尽的情况时,精确到
  * 小数点以后10位,以后的数字四舍五入
  *
  * @param v1 被除数
  * @param v2 除数
  * @return 两个参数的商
  */

 public static double div(double v1, double v2) {
  return div(v1, v2, DEF_DIV_SCALE);
 }

 /**
  * 提供(相对)精确的除法运算。当发生除不尽的情况时,由scale参数指
  * 定精度,以后的数字四舍五入
  *
  * @param v1 被除数
  * @param v2 除数
  * @param scale 表示表示需要精确到小数点以后几位。
  * @return 两个参数的商
  */
 public static double div(double v1, double v2, int scale) {
  if (scale < 0) {
   throw new IllegalArgumentException("The scale must be a positive integer or zero");
  }
  BigDecimal b1 = new BigDecimal(Double.toString(v1));
  BigDecimal b2 = new BigDecimal(Double.toString(v2));
  return b1.divide(b2, scale, BigDecimal.ROUND_HALF_UP).doubleValue();
 }

 /**
  * 提供(相对)精确的除法运算。当发生除不尽的情况时,由scale参数指
  * 定精度,以后的数字四舍五入
  *
  * @param v1 被除数
  * @param v2 除数
  * @param scale 表示需要精确到小数点以后几位
  * @return 两个参数的商
  */
 public static String div(String v1, String v2, int scale) {
  if (scale < 0) {
   throw new IllegalArgumentException("The scale must be a positive integer or zero");
  }
  BigDecimal b1 = new BigDecimal(v1);
  BigDecimal b2 = new BigDecimal(v1);
  return b1.divide(b2, scale, BigDecimal.ROUND_HALF_UP).toString();
 }

 /**
  * 提供精确的小数位四舍五入处理
  *
  * @param v  需要四舍五入的数字
  * @param scale 小数点后保留几位
  * @return 四舍五入后的结果
  */
 public static double round(double v, int scale) {
  if (scale < 0) {
   throw new IllegalArgumentException("The scale must be a positive integer or zero");
  }
  BigDecimal b = new BigDecimal(Double.toString(v));
  return b.setScale(scale, BigDecimal.ROUND_HALF_UP).doubleValue();
 }

 /**
  * 提供精确的小数位四舍五入处理
  *
  * @param v  需要四舍五入的数字
  * @param scale 小数点后保留几位
  * @return 四舍五入后的结果
  */
 public static String round(String v, int scale) {
  if (scale < 0) {
   throw new IllegalArgumentException(
     "The scale must be a positive integer or zero");
  }
  BigDecimal b = new BigDecimal(v);
  return b.setScale(scale, BigDecimal.ROUND_HALF_UP).toString();
 }

 /**
  * 取余数
  *
  * @param v1 被除数
  * @param v2 除数
  * @param scale 小数点后保留几位
  * @return 余数
  */
 public static String remainder(String v1, String v2, int scale) {
  if (scale < 0) {
   throw new IllegalArgumentException(
     "The scale must be a positive integer or zero");
  }
  BigDecimal b1 = new BigDecimal(v1);
  BigDecimal b2 = new BigDecimal(v2);
  return b1.remainder(b2).setScale(scale, BigDecimal.ROUND_HALF_UP).toString();
 }

 /**
  * 取余数 BigDecimal
  *
  * @param v1 被除数
  * @param v2 除数
  * @param scale 小数点后保留几位
  * @return 余数
  */
 public static BigDecimal remainder(BigDecimal v1, BigDecimal v2, int scale) {
  if (scale < 0) {
   throw new IllegalArgumentException(
     "The scale must be a positive integer or zero");
  }
  return v1.remainder(v2).setScale(scale, BigDecimal.ROUND_HALF_UP);
 }

 /**
  * 比较大小
  * 阿里巴巴开发规范明确:比较BigDecimal的等值需要使用compareTo,不可用equals
  * equals会比较值和精度,compareTo会忽略精度
  * @param v1 被比较数
  * @param v2 比较数
  * @return 如果v1 大于v2 则 返回true 否则false
  */
 public static boolean compare(String v1, String v2) {
  BigDecimal b1 = new BigDecimal(v1);
  BigDecimal b2 = new BigDecimal(v2);
  int bj = b1.compareTo(b2);
  boolean res;
  if (bj > 0)
   res = true;
  else
   res = false;
  return res;
 }
}

阿里巴巴Java开发手册关于BigDecimal的规定

【强制】如上所示BigDecimal的等值比较应使用compareTo()方法,而不是equals()方法。

说明:equals()方法会比较值和精度(1.0和1.00返回结果为false),而compareTo()则会忽略精度。

关于这一点,我们来看一个例子就明白了:

 public static void main(String[] args) {
  BigDecimal a = new BigDecimal("1");
  BigDecimal b = new BigDecimal("1.0");
  System.out.println(a.equals(b)); // false
  System.out.println(a.compareTo(b)); //0 表示相等
 }

JDK中对这两个方法的解释是这样的:

  • 使用compareTo方法,两个值相等但是精度不同的BigDecimal对象会被认为是相等的,比如2.0和2.00。建议使用x.compareTo(y) <op> 0来表示(<, == , > , >= , != , <=)中的其中一个关系,<op>就表示运算符。
  • equals方法与compareTo方法不同,此方法仅在两个BigDecimal对象的值和精度都相等时才被认为是相等的,如2.0和2.00就是不相等的。

以上就是Java用BigDecimal类解决Double类型精度丢失的问题的详细内容,更多关于Java BigDecimal解决Double类型精度丢失的资料请关注易盾网络其它相关文章!

网友评论