当前位置 : 主页 > 大数据 > 区块链 >

enlarge your dataset

来源:互联网 收集:自由互联 发布时间:2021-06-22
列举常见的几种数据集增强方法: 1.flip 翻折(左右,上下) # NumPy.‘img‘ = A single image. flip_1 = np.fliplr(img) # TensorFlow. ‘x‘ = A placeholder for an image. shape = [height, width, channels]x = tf.placeho

列举常见的几种数据集增强方法:

1.flip  翻折(左右,上下)

# NumPy.‘img‘ = A single image.
flip_1 = np.fliplr(img)
# TensorFlow. ‘x‘ = A placeholder for an image.
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
flip_2 = tf.image.flip_up_down(x)
flip_3 = tf.image.flip_left_right(x)
flip_4 = tf.image.random_flip_up_down(x)
flip_5 = tf.image.random_flip_left_right(x)

2.rotation 旋转

# Placeholders: ‘x‘ = A single image, ‘y‘ = A batch of images
# ‘k‘ denotes the number of 90 degree anticlockwise rotations
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
rot_90 = tf.image.rot90(img, k=1)
rot_180 = tf.image.rot90(img, k=2)
# To rotate in any angle. In the example below, ‘angles‘ is in radians
shape = [batch, height, width, 3]
y = tf.placeholder(dtype = tf.float32, shape = shape)
rot_tf_180 = tf.contrib.image.rotate(y, angles=3.1415)
# Scikit-Image. ‘angle‘ = Degrees. ‘img‘ = Input Image
# For details about ‘mode‘, checkout the interpolation section below.
rot = skimage.transform.rotate(img, angle=45, mode=reflect)

3.scale 缩放

# Scikit Image. ‘img‘ = Input Image, ‘scale‘ = Scale factor
# For details about ‘mode‘, checkout the interpolation section below.
scale_out = skimage.transform.rescale(img, scale=2.0, mode=constant)
scale_in = skimage.transform.rescale(img, scale=0.5, mode=constant)
# Don‘t forget to crop the images back to the original size (for 
# scale_out)

4.crop 裁剪

# TensorFlow. ‘x‘ = A placeholder for an image.
original_size = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = original_size)
# Use the following commands to perform random crops
crop_size = [new_height, new_width, channels]
seed = np.random.randint(1234)
x = tf.random_crop(x, size = crop_size, seed = seed)
output = tf.images.resize_images(x, size = original_size)

5.translation 水平或竖直移动

# pad_left, pad_right, pad_top, pad_bottom denote the pixel 
# displacement. Set one of them to the desired value and rest to 0
shape = [batch, height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
# We use two functions to get our desired augmentation
x = tf.image.pad_to_bounding_box(x, pad_top, pad_left, height + pad_bottom + pad_top, width + pad_right + pad_left)
output = tf.image.crop_to_bounding_box(x, pad_bottom, pad_right, height, width)

6.gaussion noise 噪点

#TensorFlow. ‘x‘ = A placeholder for an image.
shape = [height, width, channels]
x = tf.placeholder(dtype = tf.float32, shape = shape)
# Adding Gaussian noise
noise = tf.random_normal(shape=tf.shape(x), mean=0.0, stddev=1.0,
dtype=tf.float32)
output = tf.add(x, noise)

7.gan高级增强

 

旋转、缩放等操作,有可能造成未知区域弥补,具体细节以及上面各种方法,见下面原文链接介绍。

源文:https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

译文:https://blog.csdn.net/u010801994/article/details/81914716

网友评论