Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
Figure A Sample Input of Radar Installations
Input
The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.The input is terminated by a line containing pair of zeros
Output
For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.Sample Input
3 2 1 2 -3 1 2 1 1 2 0 2 0 0
Sample Output
Case 1: 2 Case 2: 1
题目大意:
就是给你n组数据和圆的半径d,让你在x轴上画半径为d的圆,问:如果将所有的点都画进去,最少需要多少个圆,这个题目和导弹拦截有点像,不过更加简单
思路:
就是先判断d是不是大于等于0,如果d<0,肯定是输出-1的,
之后输入数字,如果有坐标的纵坐标比d还要大,那么也是不对的也要输出-1
之后对坐标进行处理,把每一个坐标在x轴上的范围标记出来,并进行排序,先排右边的位置,右边位置越小就排在越前面,因为我们是要从横坐标左边往右边排
如果右边相同,就排左边,左边大的先排,因为区间范围小的肯定可以把区间范围大的包括进去,反之则不行。
排完序之后
就开始画圈圈。
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <algorithm> #include <math.h> #include <iostream> using namespace std; const int maxn=1010; struct node { double l,r; }exa[maxn]; bool cmp(node a,node b) { if(a.r==b.r) return a.l>b.l; return a.r<b.r; } int main() { int n,cnt=0;; double d,a,b; while(scanf("%d%lf",&n,&d)!=EOF&&(n+d)) { bool flag=0; if(d>=0) flag=1; for(int i=0;i<n;i++) { scanf("%lf%lf",&a,&b); if(b>d) flag=0; if(flag) { exa[i].l=a-sqrt(d*d-b*b); exa[i].r=a+sqrt(d*d-b*b); } } sort(exa,exa+n,cmp); int ans=-1; if(flag) { ans=1; double maxr=exa[0].r; for(int i=1;i<n;i++) { if(exa[i].l>maxr) { ans++; maxr=exa[i].r; } } } cout << "Case " << ++cnt << ": " << ans << endl; } return 0; }