Problem: In a 2D grid of 0 s and 1 s, we change at most one 0 to a 1 . After, what is the size of the largest island?(An island is a 4-directionally connected group of 1 s). Example 1: Input: [[1, 0], [0, 1]] Output: 3 Explanation: Change o
Problem:
In a 2D grid of 0
s and 1
s, we change at most one 0
to a 1
.
After, what is the size of the largest island? (An island is a 4-directionally connected group of 1
s).
Example 1:
Input: [[1, 0], [0, 1]] Output: 3 Explanation: Change one 0 to 1 and connect two 1s, then we get an island with area = 3.
Example 2:
Input: [[1, 1], [1, 0]] Output: 4 Explanation: Change the 0 to 1 and make the island bigger, only one island with area = 4.
Example 3:
Input: [[1, 1], [1, 1]] Output: 4 Explanation: Can‘t change any 0 to 1, only one island with area = 4.
Notes:
1 <= grid.length = grid[0].length <= 50
.0 <= grid[i][j] <= 1
.
Solution:
Hard题中的easy题,首先用一个哈希表chunk用每个联通块根节点映射该联通块对应的大小,用Union Find即可,然后对于grid中每个值为0的位置,若其上下左右某个位置为1,则找到该位置对应的根节点,在chunk中找到其对于的联通块的大小,加到square中即可,注意有可能上下左右四个方位中的某些1是联通的,所以我在循环内部用了一个哈希集root记录了访问过的根节点避免重复相加联通块。注意边界即可。
Code:
1 class Solution { 2 public: 3 int Find(vector<int> &parent,int target){ 4 while(parent[target] != target){ 5 target = parent[target]; 6 } 7 return target; 8 } 9 void Union(vector<int> &parent,int x,int y){ 10 int px = Find(parent,x); 11 int py = Find(parent,y); 12 if(px == py) return; 13 if(px < py) 14 parent[py] = px; 15 else 16 parent[px] = py; 17 } 18 int largestIsland(vector<vector<int>>& grid) { 19 int m = grid.size(); 20 int n = grid[0].size(); 21 vector<int> parent(m*n,0); 22 vector<vector<int>> dir({{0,1},{0,-1},{1,0},{-1,0}}); 23 for(int i = 0;i != m*n;++i){ 24 parent[i] = i; 25 } 26 for(int i = 0;i != m;++i){ 27 for(int j = 0;j != n;++j){ 28 if(grid[i][j] == 0) continue; 29 for(int k = 0;k != dir.size();++k){ 30 if(i+dir[k][0] < 0 || i+dir[k][0] >= m || j+dir[k][1] < 0 || j+dir[k][1] >= n) 31 continue; 32 if(grid[i+dir[k][0]][j+dir[k][1]] == 1) 33 Union(parent,i*n+j,(i+dir[k][0])*n+j+dir[k][1]); 34 } 35 } 36 } 37 int maximal = 0; 38 unordered_map<int,int> chunk; 39 for(int i = 0;i != m;++i){ 40 for(int j = 0;j != n;++j){ 41 if(grid[i][j] == 0) continue; 42 int root = Find(parent,i*n+j); 43 chunk[root]++; 44 maximal = max(maximal,chunk[root]); 45 } 46 } 47 for(int i = 0;i != m;++i){ 48 for(int j = 0;j != n;++j){ 49 if(grid[i][j] == 1) continue; 50 int square = 1; 51 unordered_set<int> root; 52 for(int k = 0;k != dir.size();++k){ 53 if(i+dir[k][0] < 0 || i+dir[k][0] >= m || j+dir[k][1] < 0 || j+dir[k][1] >= n) 54 continue; 55 if(grid[i+dir[k][0]][j+dir[k][1]] == 1){ 56 int r = Find(parent,(i+dir[k][0])*n+j+dir[k][1]); 57 if(root.find(r) == root.end()){ 58 root.insert(r); 59 square += chunk[r]; 60 } 61 } 62 } 63 maximal = max(maximal,square); 64 } 65 } 66 return maximal; 67 } 68 };