当前位置 : 主页 > 编程语言 > 其它开发 >

机器学习基础:奇异值分解(SVD)

来源:互联网 收集:自由互联 发布时间:2022-05-20
SVD 原理 奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,也是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,
SVD 原理

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,也是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。

有一个

网友评论