当前位置 : 主页 > 编程语言 > 其它开发 >

容量推荐引擎:基于吞吐量和利用率的预测缩放

来源:互联网 收集:自由互联 发布时间:2022-05-22
容量推荐引擎:基于吞吐量和利用率的预测缩放 本文介绍了一种容量推荐模型,实现方式相对相对比较简单,且已在Uber内部使用,可以依照文中的方式开发一版容量推荐系统。 译自:
容量推荐引擎:基于吞吐量和利用率的预测缩放 image

本文介绍了一种容量推荐模型,实现方式相对相对比较简单,且已在Uber内部使用,可以依照文中的方式开发一版容量推荐系统。

译自:Capacity Recommendation Engine: Throughput and Utilization Based Predictive Scaling

目录
  • 容量推荐引擎:基于吞吐量和利用率的预测缩放
    • 简介
    • 使用的指标
    • CRE算法
      • 评估峰值吞吐量
      • 定义目标利用率
      • 线性回归:归一化吞吐量和利用率
      • 生成建议的容量
      • 安全护栏(Guard Rail):保障结果
    • 架构
      • 分析流:调度分析
      • 分析流:按需分析
      • 数据采集流
      • 结果
    • 结论

简介

容量是服务可靠性的关键部分。为了支持不同的业务单元,Uber的服务需要足够的资源来处理每天的峰值流量。这些服务部署在不同的云平台和数据中心上。手动管理容量通常会导致过度分配资源,导致资源利用率低下。Uber构建了一个自动扩缩容服务,用于管理和调节上千个微服务的资源。目前的自动扩缩容服务单纯基于资源利用率指标实现的。最近我们构建了一个新的系统,称为容量推荐引擎(Capacity Recommendation Engine (CRE)),新的算法结合了吞吐量和利用率,并使用机器学习模型来实现扩缩容。该模型提供了黄金指标和服务容量之间的对应关系。通过反应性预测,CRE可以基于线性回归模型和峰值流量估算出区域服务的容量。除了容量,分析报告还可以告诉我们不同区域服务的特性和性能回归。本文将会深入介绍CRE模型以及系统架构,并提供该模型的一些分析结果。

使用的指标

在容量管理方面,利用率(utilization)是最常用的扩缩容指标。在CRE中,除了利用率,还使用吞吐量(throughput)作为另一个容量评估的重要指标。吞吐量代表了业务产品需求。在服务层面,可以转换为每个实例的RPS(每秒请求数)。每当推出新产品以及变更依赖的扇出模式时,都会直接导致服务吞吐量的变化,从而影响容量需求。我们的目标是获取满足利用率需求的服务容量或实例数。我们将实例的CPU core乘以实例数,得到服务所需的总CPU core数。通过将资源分配引入预测模型,就可以将指标与服务容量关联起来。CRE使用吞吐量和资源分配时序数据来构造线性回归模型。

image

图1:CRE使用的黄金指标

CRE算法

Uber使用了多家云厂商,每家厂商都有不同的网络栈、硬件类型和流量模型。我们将每个区域作为独立的扩缩容目标,通过单独进行线性回归分析来考虑不同环境下的差异。从结果中可以看出各自的性能差异,并进一步影响缩放组中的容量。

CRE的推荐流程包括如下步骤:

  • 评估峰值吞吐量
  • 定义目标利用率
  • 创建线性回归模型
  • 生成推荐结果
  • 限制服务使用的资源

CRE使用峰值吞吐量和目标利用率,以及步骤3生成的指标关系来计算容量实例数。每个步骤都对最终的推荐容量和服务可靠性至关重要。下面将深入了解一下各个步骤。

评估峰值吞吐量

由于扩缩容的频率不同(小时、天、周),其需要评估的吞吐量也不同。

例如按周来评估吞吐量:将目标吞吐量 RPSTarget作为下一周评估的峰值流量。CRE使用的默认吞吐量评估方式为时序分解模型。使用基于STL的时序分解方式将全局吞吐量时序数据分为趋势(trend)、季节性(seasonality)和其他(residue)三部分。这三部分之和表示了原始全局吞吐量指标。seasonality表示一个频率模式,trend表示跨天的模式。下例以天作为seasonality,展示了美国/拉丁美洲的上下班的峰值。residue 为不匹配trend或seasonality的剩余原始指标,通常表示噪音。使用时序分解结果,CRE可以为大多数服务提供可靠的预测。

image

图2吞吐量分解结果

定义目标利用率

目标利用率(UtilizationTarget)是CRE中用来推导容量数值的一个信号。该信号描述了未来服务资源的最大利用率。为了有效利用资源,应该尽量提高利用率,以便为未预测到的情况预留一部分缓冲余地。正常情况下,每天的流量不会超过目标利用率。目标利用率应该包括某些特殊场景,如区域下线,此时该区域的流量会转移到其他区域,此时由于流量的上升,利用率也会随之上升。

线性回归:归一化吞吐量和利用率

对于资源密集型的服务,利用率、吞吐量、容量、服务以及硬件性能都是常见的关联因子,且相互影响。一旦其中一个因子发生了变化,通常也会影响到其他因子。由于我们的目标是评估服务容量,因此需要确定这些信号之间的关系。CRE使用利用率和归一化吞吐量来构建一个线性回归模型。通过将吞吐量除以实例核数,可以得出归一化吞吐量--称之为每核吞吐量(TPC)。通过归一化吞吐量指标,我们可以将相关因子范围缩小到利用率和TPC。通过线性回归结果展示的斜率和截距可以观察到性能变化曲线。下面是利用率和TPC的关系公式:

\[Utilization =
上一篇:【freertos】008
下一篇:没有了
网友评论