当前位置 : 主页 > 编程语言 > 其它开发 >

1:8的自动驾驶模型车,教学研发两相宜

来源:互联网 收集:自由互联 发布时间:2022-05-30
前言 随着自动驾驶技术的如火如荼发展,各种仿真、台架和实际道路试验手段也都应用在研发测试的各个阶段。人才培养也成为企业发展的重要基石。为了帮助高校学生在学校就可以动

前言

 


随着自动驾驶技术的如火如荼发展,各种仿真、台架和实际道路试验手段也都应用在研发测试的各个阶段。人才培养也成为企业发展的重要基石。为了帮助高校学生在学校就可以动手进行“真实”的操练,德国MdynamiX专门推出了MXcarkit开发套装,为自动驾驶仿真和测试搭建坚实的阶梯。


对于在ADAS/AD领域的学生来说,MXcarkit是快速入门的好帮手,能迅速观测算法的结果。对于教学和研发来说,都是一个非常高效的工具。




MXcarkit的主要特点:

  • 载体是一辆1:8的高质量模型车,安装了真实的传感器、特制的电机控制器和一个实时计算机,这样能满足自动驾驶的相关要求。
  • 基于功能强大的NVIDIA Jetson计算机,可以访问所有搭载的传感器和执行器,实现车辆动力学控制和面向机器人和人工智能AI的应用。
  • 实时计算机NVIDIA Jetson上安装了ROS机器人操作系统。可以方便地对ADAS/AD应用算法进行处理和开发,同时也能借助标准接口来集成更多的传感器和执行器。
  • 易于调试和上手,自带基础软件功能(如车道识别和车辆控制),可以方便地进行驾驶操控的编程、进一步的软件开发和参数优化。
  • MXcarkit还配备了WLAN模块,可以进行在线远程访问和数据评估。
  • MdynamiX还提供在线技术论坛来解答与MXcarkit相关的各种问题

 

 

自动泊车APA的研究示例

 


在德国高校的自动驾驶挑战比赛中,有一个参赛组就是专注挑战自动泊车这个主题,关注车辆如何自动识别泊车空间的标记,规划泊车位置,然后再生成地图用于检测这些泊车位是被占用或空闲。



MXcarkit模型车装备与实际车辆相同的传感器技术,可以实现对泊车空间的探测。借助前置摄像头采集的图像,MXcarkit检测到泊车位标志线并把图像坐标系转换成车辆坐标系,再结合环境地图,车辆就能自动泊车。这样可以同时探测到泊车过程中的动静态障碍,并检测泊车空间是否可用。除了自行开发泊车空间检测系统外,还可以在该系统上添加基于广泛应用的ROS代码包的传感器数据融合和SLAM(即时定位和地图构建)算法。


MXcarkit的优势非常明显。预置成熟硬件和接口,自带各种传感器驱动。这样学生(工程师)可以100%关注最重要的任务,比如检测停车位,计算车辆到泊车位的位置等算法。甚至更高阶的研究,比如基于轨迹规划的完全自动泊车,基于传感器数据融合提升车辆里程估算,这些都可以基于MXcarkit展开。

 

 

 

MXcarkit自动驾驶套装

 


车辆平台:

  • 高品质1:8模型车
  • 电机控制:FSESC 4.20
  • ECU和传感器供电:2x 7.4V 锂离子电池 (25 Ah)


ECUs:

  • NVIDIA Jetson Nano (128 CUDA-Cores, 4 GB RAM and Wifi Module)
  • 1x STM32 Nucleo:用于超声波传感器、RC接收器和可选车灯的数据采集和预处理。
  • FLIPSKY FSESC4.20

 

传感器:

  • 双目摄像头:Intel® RealSense™ Depth Camera D435i with integrated IMU
  • 超声波传感器:10x (带自动环境温度补偿)
  • RPLIDAR A3
  • 2x IMU 6DOF

定制的安装架:

  • NVIDIA Jetson Board
  • Lithium Polymer Powerpack
  • Steering Servo
  • Camera
  • STM32 Nucleo Board
  • Ultrasound Sensors
  • USB Hub
  • IMU
  • LIDAR

 

软件:

  • 机器人操作系统ROS
  • 基础传感器的集成
  • 电机控制
  • 转向控制
  • 基于图像处理和人工智能AI算法的路径控制示例

 

附件:

  • Remote control
  • 电池充电器
  • USB Hub
  • 快速入门指南

上一篇:Vulnhub-DarkHole_2-Writeup
下一篇:没有了
网友评论