当前位置 : 主页 > 编程语言 > python >

【智能优化算法】基于自适应灰狼优化算法求解单目标优化问题附matlab代码

来源:互联网 收集:自由互联 发布时间:2022-06-15
1 简介 1.1 灰狼算法介绍 ​ 编辑 ​ 编辑 2 部分代码 %___________________________________________________________________% % Grey Wold Optimizer (GWO) source codes version 1.0 % % % % Developed in MATLAB R2011b(7.13) % % % %



1 简介

1.1 灰狼算法介绍

【智能优化算法】基于自适应灰狼优化算法求解单目标优化问题附matlab代码_优化算法

【智能优化算法】基于自适应灰狼优化算法求解单目标优化问题附matlab代码_参考文献_02编辑

【智能优化算法】基于自适应灰狼优化算法求解单目标优化问题附matlab代码_参考文献_03

【智能优化算法】基于自适应灰狼优化算法求解单目标优化问题附matlab代码_优化算法_04编辑

2 部分代码

%___________________________________________________________________%
% Grey Wold Optimizer (GWO) source codes version 1.0 %
% %
% Developed in MATLAB R2011b(7.13) %
% %
% Author and programmer: Seyedali Mirjalili %
% %
% e-Mail: ali.mirjalili@gmail.com %
% seyedali.mirjalili@griffithuni.edu.au %
% %
% Homepage: http://www.alimirjalili.com %
% %
% Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis %
% Grey Wolf Optimizer, Advances in Engineering %
% Software , in press, %
% DOI: 10.1016/j.advengsoft.2013.12.007 %
% %
%___________________________________________________________________%
% Grey Wolf Optimizer
function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)
% initialize alpha, beta, and delta_pos
Alpha_pos=zeros(1,dim);
Alpha_score=inf; %change this to -inf for maximization problems
Beta_pos=zeros(1,dim);
Beta_score=inf; %change this to -inf for maximization problems
Delta_pos=zeros(1,dim);
Delta_score=inf; %change this to -inf for maximization problems
%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);
Convergence_curve=zeros(1,Max_iter);
l=0;% Loop counter
% Main loop
while l<Max_iter
for i=1:size(Positions,1)
% Return back the search agents that go beyond the boundaries of the search space
Flag4ub=Positions(i,:)>ub;
Flag4lb=Positions(i,:)<lb;
Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
% Calculate objective function for each search agent
fitness=fobj(Positions(i,:));
% Update Alpha, Beta, and Delta
if fitness<Alpha_score
Alpha_score=fitness; % Update alpha
Alpha_pos=Positions(i,:);
end
if fitness>Alpha_score && fitness<Beta_score
Beta_score=fitness; % Update beta
Beta_pos=Positions(i,:);
end
if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score
Delta_score=fitness; % Update delta
Delta_pos=Positions(i,:);
end
end
a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0
% Update the Position of search agents including omegas
for i=1:size(Positions,1)
for j=1:size(Positions,2)
r1=rand(); % r1 is a random number in [0,1]
r2=rand(); % r2 is a random number in [0,1]
A1=2*a*r1-a; % Equation (3.3)
C1=2*r2; % Equation (3.4)
D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1
r1=rand();
r2=rand();
A2=2*a*r1-a; % Equation (3.3)
C2=2*r2; % Equation (3.4)
D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2
r1=rand();
r2=rand();
A3=2*a*r1-a; % Equation (3.3)
C3=2*r2; % Equation (3.4)
D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3
Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)
end
end
l=l+1;
Convergence_curve(l)=Alpha_score;
end

3 仿真结果

【智能优化算法】基于自适应灰狼优化算法求解单目标优化问题附matlab代码_参考文献_05

【智能优化算法】基于自适应灰狼优化算法求解单目标优化问题附matlab代码_参考文献_06编辑

【智能优化算法】基于自适应灰狼优化算法求解单目标优化问题附matlab代码_d3_07

【智能优化算法】基于自适应灰狼优化算法求解单目标优化问题附matlab代码_优化算法_08编辑

4 参考文献

[1]罗佳, 唐斌. 新型灰狼优化算法在函数优化中的应用[J]. 兰州理工大学学报, 2016, 42(3):6.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

【智能优化算法】基于自适应灰狼优化算法求解单目标优化问题附matlab代码_d3_09

【智能优化算法】基于自适应灰狼优化算法求解单目标优化问题附matlab代码_d3_10编辑

网友评论