前言
本文的文字及图片过滤网络,可以学习,交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。
基本开发环境
- Python 3.6
- 皮查姆
目标网页分析
网站就选择发表情这个网站吧
网站是静态网页,所有的数据都保存在div标签中,爬取的难度不大。
根据标签提取其中的表情包url地址以及标题就可以了。
普通爬虫实现
import requestsimport parsel
import re
def change_title(title):
pattern = re.compile(r"[\/\\\:\*\?\"\<\>\|]") # '/ \ : * ? " < > |'
new_title = re.sub(pattern, "_", title) # 替换为下划线
return new_title
for page in range(0, 201):
url = f'https://www.fabiaoqing.com/biaoqing/lists/page/{page}.html'
headers = {
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'
}
response = requests.get(url=url, headers=headers)
selector = parsel.Selector(response.text)
divs = selector.css('.tagbqppdiv')
for div in divs:
img_url = div.css('a img::attr(data-original)').get()
title_ = img_url.split('.')[-1]
title = div.css('a img::attr(title)').get()
new_title = change_title(title) + title_
img_content = requests.get(url=img_url, headers=headers).content
path = 'img\\' + new_title
with open(path, mode='wb') as f:
f.write(img_content)
print(title)
代码简单的说明:
1,标题的替换,因为有一些图片的标题,其中会包含特殊字符,在创建文件的时候特殊字符是不能命名的,所以需要使用正则把有可能出现的特殊字符替换掉。
divs = selector.css('.tagbqppdiv')for div in divs:
img_url = div.css('a img::attr(data-original)').get()
title_ = img_url.split('.')[-1]
title = div.css('a img::attr(title)').get()
new_title = change_title(title) + title_
2,翻页爬取以及模拟浏览器请求网页
img_content = requests.get(url=img_url, headers=headers).contentpath = 'img\\' + new_title
with open(path, mode='wb') as f:
f.write(img_content)
print(title)
翻页多点击下一页看一下url地址的变化就可以找到相对应规律了,网站是get请求方式,使用请求请求网页即可,加上标题请求头,伪装浏览器请求,如果不加,网站会识别出你是python爬虫程序请求访问的,不过对于这个网站,其实加不加都差不多的。
3,解析数据提取想要的数据
img_content = requests.get(url=img_url, headers=headers).contentpath = 'img\\' + new_title
with open(path, mode='wb') as f:
f.write(img_content)
print(title)
这里我们使用的是parsel解析库,用的是css选择器解析的数据。
就是根据标签属性提取相对应的数据内容。
4,保存数据
img_content = requests.get(url=img_url, headers=headers).contentpath = 'img\\' + new_title
with open(path, mode='wb') as f:
f.write(img_content)
print(title)
请求表情包url地址,返回获取内容二进制数据,图片,视频,文件等等都是二进制数据保存的。如果是文字则是text。
path就是文件保存的路径,因为是二进制数据,所以保存方式是wb。
多线程爬虫实现
import parsel
import re
import concurrent.futures
def get_response(html_url):
"""模拟浏览器请求网址,获得网页源代码"""
headers = {
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'
}
response = requests.get(url=html_url, headers=headers)
return response
def change_title(title):
"""正则匹配特殊字符标题"""
pattern = re.compile(r"[\/\\\:\*\?\"\<\>\|]") # '/ \ : * ? " < > |'
new_title = re.sub(pattern, "_", title) # 替换为下划线
return new_title
def save(img_url, title):
"""保存表情到本地文件"""
img_content = get_response(img_url).content
path = 'img\\' + title
with open(path, mode='wb') as f:
f.write(img_content)
print(title)
def main(html_url):
"""主函数"""
response = get_response(html_url)
selector = parsel.Selector(response.text)
divs = selector.css('.tagbqppdiv')
for div in divs:
img_url = div.css('a img::attr(data-original)').get()
title_ = img_url.split('.')[-1]
title = div.css('a img::attr(title)').get()
new_title = change_title(title) + title_
save(img_url, new_title)
if __name__ == '__main__':
executor = concurrent.futures.ThreadPoolExecutor(max_workers=5)
for page in range(0, 201):
url = f'https://www.fabiaoqing.com/biaoqing/lists/page/{page}.html'
executor.submit(main, url)
executor.shutdown()
简单的代码说明:
其实在前文已经有铺垫了,多线程爬虫就是把每一块都封装成函数,让它每一块代码都有它的作用,然后通过线程模块启动就好。
executor = concurrent.futures.ThreadPoolExecutor(max_workers=5)最大的线程数
scrapy框架爬虫实现
关于scrapy框架项目的创建这里只是不过多讲了,之前文章有详细讲解过,scrapy框架项目的创建,可以点击下方链接查看
简单使用scrapy爬虫框架批量采集网站数据
items.py
import scrapyfrom ..items import BiaoqingbaoItem
class BiaoqingSpider(scrapy.Spider):
name = 'biaoqing'
allowed_domains = ['fabiaoqing.com']
start_urls = [f'https://www.fabiaoqing.com/biaoqing/lists/page/{page}.html' for page in range(1, 201)]
def parse(self, response):
divs = response.css('#bqb div.ui.segment.imghover div')
for div in divs:
img_url = div.css('a img::attr(data-original)').get()
title = div.css('a img::attr(title)').get()
yield BiaoqingbaoItem(img_url=img_url, title=title)
middlewares.py
BOT_NAME = 'biaoqingbao'SPIDER_MODULES = ['biaoqingbao.spiders']
NEWSPIDER_MODULE = 'biaoqingbao.spiders'
DOWNLOADER_MIDDLEWARES = {
'biaoqingbao.middlewares.BiaoqingbaoDownloaderMiddleware': 543,
}
ITEM_PIPELINES = {
'biaoqingbao.pipelines.DownloadPicturePipeline': 300,
}
IMAGES_STORE = './images'
pipelines.py
import scrapyfrom ..items import BiaoqingbaoItem
class BiaoqingSpider(scrapy.Spider):
name = 'biaoqing'
allowed_domains = ['fabiaoqing.com']
start_urls = [f'https://www.fabiaoqing.com/biaoqing/lists/page/{page}.html' for page in range(1, 201)]
def parse(self, response):
divs = response.css('#bqb div.ui.segment.imghover div')
for div in divs:
img_url = div.css('a img::attr(data-original)').get()
title = div.css('a img::attr(title)').get()
yield BiaoqingbaoItem(img_url=img_url, title=title)
setting.py
BOT_NAME = 'biaoqingbao'SPIDER_MODULES = ['biaoqingbao.spiders']
NEWSPIDER_MODULE = 'biaoqingbao.spiders'
DOWNLOADER_MIDDLEWARES = {
'biaoqingbao.middlewares.BiaoqingbaoDownloaderMiddleware': 543,
}
ITEM_PIPELINES = {
'biaoqingbao.pipelines.DownloadPicturePipeline': 300,
}
IMAGES_STORE = './images'
标清
import scrapyfrom ..items import BiaoqingbaoItem
class BiaoqingSpider(scrapy.Spider):
name = 'biaoqing'
allowed_domains = ['fabiaoqing.com']
start_urls = [f'https://www.fabiaoqing.com/biaoqing/lists/page/{page}.html' for page in range(1, 201)]
def parse(self, response):
divs = response.css('#bqb div.ui.segment.imghover div')
for div in divs:
img_url = div.css('a img::attr(data-original)').get()
title = div.css('a img::attr(title)').get()
yield BiaoqingbaoItem(img_url=img_url, title=title)
简单总结:
三个程序的最大的区别就在于在于爬取速度的相对,但是如果从写代码的时间上面来计算的话,普通是最简单的,因为对于这样的静态网站根本不需要调试,可以从头写到位,加上空格一共也就是29行的代码。