往前2篇的博客中,爬取了谣言百科网站中不同分类的新闻并以文本的形式存取下来啦。 上一篇博客中对存取的文件进行了中文分词操作,现在我们想要对存取的文本进行词频统计操作
往前2篇的博客中,爬取了谣言百科网站中不同分类的新闻并以文本的形式存取下来啦。
上一篇博客中对存取的文件进行了中文分词操作,现在我们想要对存取的文本进行词频统计操作。
上代码:
# -*- coding: utf-8 -*-"""
Created on Thu Mar 8 14:21:05 2018
@author: Administrator
"""
# 2017年7月4日17:08:15
# silei
# 训练模型,查看效果
# 数据文件数一共1209个
# baby,car,food,health,legend,life,love,news,science,sexual
# 130,130,130,130,130,130,130,130,130,39
# -*- coding:UTF-8 -*-
dir = {'baby': 130,'car': 130,'food': 130,'health': 130,'legend': 130,'life': 130,'love': 130,'news': 130,'science': 130,'sexual': 39}# 设置词典,分别是类别名称和该类别下一共包含的文本数量
data_file_number = 0# 当前处理文件索引数
def MakeAllWordsList(train_datasseg):# 统计词频
all_words = {}
for train_dataseg in train_datasseg:
for word in train_dataseg:
if word in all_words:
all_words[word] += 1
else:
all_words[word] = 1
# print("all_words length in all the train datas: ", len(all_words.keys()))# 所有出现过的词数目
all_words_reverse = sorted(all_words.items(), key=lambda f:f[1], reverse=True) # 内建函数sorted参数需为list # key函数利用词频进行降序排序
for all_word_reverse in all_words_reverse:
print(all_word_reverse[0], "\t", all_word_reverse[1])
all_words_list = [all_word_reverse[0] for all_word_reverse in all_words_reverse if len(all_word_reverse[0])>1]
return all_words_list
if __name__ == "__main__":
for world_data_name,world_data_number in dir.items():
while (data_file_number < world_data_number):
print(world_data_name)
print(world_data_number)
print(data_file_number)
file = open('F:\\test\\'+world_data_name+'\\'+str(data_file_number)+'.txt','r',encoding= 'UTF-8')
MakeAllWordsList(file)
for line in file:
print(line+'\n', end='')
file.close()
运行完词频统计结束~