当前位置 : 主页 > 编程语言 > python >

【鲸鱼算法】基于阈值控制的鲸鱼算法求解单目标优化问题附matlab代码(TIWOA)

来源:互联网 收集:自由互联 发布时间:2022-06-18
1 简介 针对鲸鱼算法在迭代后期种群多样性减少问题,本文提出一种基于阈值控制的改进鲸鱼优化算法(简记为TIWOA),将均匀分布空间与伪反向学习策略相结合,对原始种群位置进行初始化

1 简介

针对鲸鱼算法在迭代后期种群多样性减少问题,本文提出一种基于阈值控制的改进鲸鱼优化算法(简记为TIWOA),将均匀分布空间与伪反向学习策略相结合,对原始种群位置进行初始化,为全局搜索奠定基础;改进了基于正态变异算子的选择种群方案,增加了局部搜索速度;设计了非线性收敛因子,配合改进的基于正弦函数的螺旋位置更新,使算法在迭代后期有更好的全局搜索能力.文中选取了25个国际标准测试函数对改进算法进行测试,结果表明,TIWOA算法在收敛精度与收敛速度上,更明显优于其它算法,经过Friedman检验与Wilcoxon检验,TIWOA算法与其它改进的WOA有显著性差异,说明TIWOA算法改进有明显效果.

【鲸鱼算法】基于阈值控制的鲸鱼算法求解单目标优化问题附matlab代码(TIWOA)_迭代

【鲸鱼算法】基于阈值控制的鲸鱼算法求解单目标优化问题附matlab代码(TIWOA)_优化算法_02

【鲸鱼算法】基于阈值控制的鲸鱼算法求解单目标优化问题附matlab代码(TIWOA)_优化算法_03

【鲸鱼算法】基于阈值控制的鲸鱼算法求解单目标优化问题附matlab代码(TIWOA)_迭代_04

【鲸鱼算法】基于阈值控制的鲸鱼算法求解单目标优化问题附matlab代码(TIWOA)_全局搜索_05

【鲸鱼算法】基于阈值控制的鲸鱼算法求解单目标优化问题附matlab代码(TIWOA)_全局搜索_06

【鲸鱼算法】基于阈值控制的鲸鱼算法求解单目标优化问题附matlab代码(TIWOA)_优化算法_07

【鲸鱼算法】基于阈值控制的鲸鱼算法求解单目标优化问题附matlab代码(TIWOA)_迭代_08


2 部分代码

%_________________________________________________________________________%
% 鲸鱼优化算法 %
%_________________________________________________________________________%
% The Whale Optimization Algorithm
function [Leader_score,Leader_pos,Convergence_curve]=WOA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)
% initialize position vector and score for the leader
Leader_pos=zeros(1,dim);
Leader_score=inf; %change this to -inf for maximization problems
%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);
Convergence_curve=zeros(1,Max_iter);
t=0;% Loop counter
% Main loop
while t<Max_iter
for i=1:size(Positions,1)
% Return back the search agents that go beyond the boundaries of the search space
Flag4ub=Positions(i,:)>ub;
Flag4lb=Positions(i,:)<lb;
Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
% Calculate objective function for each search agent
fitness=fobj(Positions(i,:));
% Update the leader
if fitness<Leader_score % Change this to > for maximization problem
Leader_score=fitness; % Update alpha
Leader_pos=Positions(i,:);
end
end
a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)
% a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)
a2=-1+t*((-1)/Max_iter);
% Update the Position of search agents
for i=1:size(Positions,1)
r1=rand(); % r1 is a random number in [0,1]
r2=rand(); % r2 is a random number in [0,1]
A=2*a*r1-a; % Eq. (2.3) in the paper
C=2*r2; % Eq. (2.4) in the paper
b=1; % parameters in Eq. (2.5)
l=(a2-1)*rand+1; % parameters in Eq. (2.5)
p = rand(); % p in Eq. (2.6)
for j=1:size(Positions,2)
if p<0.5
if abs(A)>=1
rand_leader_index = floor(SearchAgents_no*rand()+1);
X_rand = Positions(rand_leader_index, :);
D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)
Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8)
elseif abs(A)<1
D_Leader=abs(C*Leader_pos(j)-Positions(i,j)); % Eq. (2.1)
Positions(i,j)=Leader_pos(j)-A*D_Leader; % Eq. (2.2)
end
elseif p>=0.5
distance2Leader=abs(Leader_pos(j)-Positions(i,j));
% Eq. (2.5)
Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);
end
end
end
t=t+1;
Convergence_curve(t)=Leader_score;
end

3 仿真结果

【鲸鱼算法】基于阈值控制的鲸鱼算法求解单目标优化问题附matlab代码(TIWOA)_迭代_09

【鲸鱼算法】基于阈值控制的鲸鱼算法求解单目标优化问题附matlab代码(TIWOA)_优化算法_10

4 参考文献

[1]黄飞, 吴泽忠. 基于阈值控制的一种改进鲸鱼算法[J]. 系统工程, 2020, 38(2):16.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

【鲸鱼算法】基于阈值控制的鲸鱼算法求解单目标优化问题附matlab代码(TIWOA)_优化算法_11


网友评论