当前位置 : 主页 > 编程语言 > python >

【PID优化】基于麻雀算法PID控制器优化设计含Matlab源码

来源:互联网 收集:自由互联 发布时间:2022-06-18
1 简介 PID控制器的参数整定表现为在3个参数空间中寻求最优值,使得系统的控制性能达到最优。麻雀算法是一种新兴的群智能优化算法。为加强PID控制器的参数整定,基于麻雀算法,提出一

1 简介

PID控制器的参数整定表现为在3个参数空间中寻求最优值,使得系统的控制性能达到最优。麻雀算法是一种新兴的群智能优化算法。为加强PID控制器的参数整定,基于麻雀算法,提出一种PID控制器参数自整定方法,实现PID控制器的参数寻优。

2 部分代码

function [fMin , bestX, Convergence_curve] = SSA(X, N, M, c, d, dim, fobj)
P_percent = 0.2; % 发现者的种群规模占总种群规模的百分比
pNum = round(N*P_percent); % 发现者数量20%
SD = pNum/2; % 警戒者数量10%
ST = 0.8; % 安全阈值
lb = c.*ones(1, dim); % 下限
ub = d.*ones(1,dim); % 上限
% 初始化
for i = 1:N
% X(i, :) = lb + (ub - lb) .* rand(1, dim);
fitness(i) = fobj(X(i, :));
end
pFit = fitness;
pX = X; % 与pFit相对应的个体最佳位置
[fMin, bestI] = min(fitness); % fMin表示全局最优解
bestX = X(bestI, :); % bestX表示全局最优位置
%% 迭代寻优
for t = 1 : M
[~, sortIndex] = sort(pFit); % 排序
[fmax, B] = max(pFit);
worst = X(B, :);
%% 发现者位置更新
r2 = rand(1);
if r2 < ST
for i = 1:pNum % Equation (3)
r1 = rand(1);
X(sortIndex(i), :) = pX(sortIndex(i), :)*exp(-(i)/(r1*M));
X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);
fitness(sortIndex(i)) = fobj(X(sortIndex(i), :));
end
else
for i = 1:pNum
X(sortIndex(i), :) = pX(sortIndex(i), :)+randn(1)*ones(1, dim);
X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);
fitness(sortIndex(i)) = fobj(X(sortIndex(i), :));
end
end
[~, bestII] = min(fitness);
bestXX = X(bestII, :);
%% 跟随者位置更新
for i = (pNum+1):N % Equation (4)
A = floor(rand(1, dim)*2)*2-1;
if i > N/2
X(sortIndex(i), :) = randn(1)*exp((worst-pX(sortIndex(i), :))/(i)^2);
else
X(sortIndex(i), :) = bestXX+(abs((pX(sortIndex(i), :)-bestXX)))*(A'*(A*A')^(-1))*ones(1, dim);
end
X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);
fitness(sortIndex(i)) = fobj(X(sortIndex(i), :));
end
%% 警戒者位置更新
c = randperm(numel(sortIndex));
b = sortIndex(c(1:SD));
for j = 1:length(b) % Equation (5)
if pFit(sortIndex(b(j))) > fMin
X(sortIndex(b(j)), :) = bestX+(randn(1, dim)).*(abs((pX(sortIndex(b(j)), :) -bestX)));
else
X(sortIndex(b(j)), :) = pX(sortIndex(b(j)), :)+(2*rand(1)-1)*(abs(pX(sortIndex(b(j)), :)-worst))/(pFit(sortIndex(b(j)))-fmax+1e-50);
end
X(sortIndex(b(j)), :) = Bounds(X(sortIndex(b(j)), :), lb, ub);
fitness(sortIndex(b(j))) = fobj(X(sortIndex(b(j)), :));
end
for i = 1:N
% 更新个体最优
if fitness(i) < pFit(i)
pFit(i) = fitness(i);
pX(i, :) = X(i, :);
end
% 更新全局最优
if pFit(i) < fMin
fMin = pFit(i);
bestX = pX(i, :);
end
end
Convergence_curve(t) = fMin;
disp(['SSA: At iteration ', num2str(t), ' ,the best fitness is ', num2str(fMin)]);
end
%% 边界处理
function s = Bounds(s, Lb, Ub)
% 下界
temp = s;
I = temp < Lb;
temp(I) = Lb(I);
% 上界
J = temp > Ub;
temp(J) = Ub(J);
% 更新
s = temp;

3 仿真结果

【PID优化】基于麻雀算法PID控制器优化设计含Matlab源码_参数寻优

【PID优化】基于麻雀算法PID控制器优化设计含Matlab源码_优化算法_02

4 参考文献

[1]何学明, 苗燕楠, 罗再磊. 基于教与学优化算法的PID控制器参数寻优[J]. 计算机工程, 2015, 41(008):313-316.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


【PID优化】基于麻雀算法PID控制器优化设计含Matlab源码_参数寻优_03


【文章原创作者:武汉网络公司 http://www.wh5w.com提供,感恩】
网友评论