SKlearn模型评估方法 准确率 1.accuracy_score # 准确率import numpy as npfrom sklearn.metrics import accuracy_scorey_pred = [0, 2, 1, 3,9,9,8,5,8]y_true = [0, 1, 2, 3,2,6,3,5,9]accuracy_score(y_true, y_pred)Out[127]: 0.333333333333
SKlearn模型评估方法
准确率
1.accuracy_score
# 准确率 import numpy as np from sklearn.metrics import accuracy_score y_pred = [0, 2, 1, 3,9,9,8,5,8] y_true = [0, 1, 2, 3,2,6,3,5,9] accuracy_score(y_true, y_pred) Out[127]: 0.33333333333333331 accuracy_score(y_true, y_pred, normalize=False) # 类似海明距离,每个类别求准确后,再求微平均 Out[128]: 32.metrics
- 宏平均比微平均更合理,但也不是说微平均一无是处,具体使用哪种评测机制,还是要取决于数据集中样本分布
- 宏平均(Macro-averaging),是先对每一个类统计指标值,然后在对所有类求算术平均值。
- 微平均(Micro-averaging),是对数据集中的每一个实例不分类别进行统计建立全局混淆矩阵,然后计算相应指标。 from sklearn import metrics metrics.precision_score(y_true, y_pred, average='micro') # 微平均,精确率 Out[130]: 0.33333333333333331
metrics.precision_score(y_true, y_pred, average='macro') # 宏平均,精确率Out[131]: 0.375
metrics.precision_score(y_true, y_pred, labels=[0, 1, 2, 3], average='macro') # 指定特定分类标签的精确率Out[133]: 0.5
- 其中average参数有五种:(None, ‘micro’, ‘macro’, ‘weighted’, ‘samples’) ### 召回率 ``` Python metrics.recall_score(y_true, y_pred, average='micro') Out[134]: 0.33333333333333331 metrics.recall_score(y_true, y_pred, average='macro') Out[135]: 0.3125F1
metrics.f1_score(y_true, y_pred, average='weighted') Out[136]: 0.37037037037037035F2
根据公式计算
from sklearn.metrics import precision_score, recall_score def calc_f2(label, predict): p = precision_score(label, predict) r = recall_score(label, predict) f2_score = 5*p*r / (4*p + r) return f2_score混淆矩阵
from sklearn.metrics import confusion_matrix confusion_matrix(y_true, y_pred) Out[137]: array([[1, 0, 0, ..., 0, 0, 0], [0, 0, 1, ..., 0, 0, 0], [0, 1, 0, ..., 0, 0, 1], ..., [0, 0, 0, ..., 0, 0, 1], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 1, 0]])分类报告
包含:precision/recall/fi-score/均值/分类个数
# 分类报告:precision/recall/fi-score/均值/分类个数 from sklearn.metrics import classification_report y_true = [0, 1, 2, 2, 0] y_pred = [0, 0, 2, 2, 0] target_names = ['class 0', 'class 1', 'class 2'] print(classification_report(y_true, y_pred, target_names=target_names))输出
precision recall f1-score support class 0 0.67 1.00 0.80 2 class 1 0.00 0.00 0.00 1 class 2 1.00 1.00 1.00 2 avg / total 0.67 0.80 0.72 5kappa score
- kappa score是一个介于(-1, 1)之间的数. score>0.8意味着好的分类;0或更低意味着不好(实际是随机标签)
from sklearn.metrics import cohen_kappa_score
y_true = [2, 0, 2, 2, 0, 1]
y_pred = [0, 0, 2, 2, 0, 2]
cohen_kappa_score(y_true, y_pred)
ROC
1.计算ROC值
import numpy as np from sklearn.metrics import roc_auc_score y_true = np.array([0, 0, 1, 1]) y_scores = np.array([0.1, 0.4, 0.35, 0.8]) roc_auc_score(y_true, y_scores)2.ROC曲线
y = np.array([1, 1, 2, 2]) scores = np.array([0.1, 0.4, 0.35, 0.8]) fpr, tpr, thresholds = roc_curve(y, scores, pos_label=2)海明距离
from sklearn.metrics import hamming_loss y_pred = [1, 2, 3, 4] y_true = [2, 2, 3, 4] hamming_loss(y_true, y_pred) 0.25Jaccard距离
import numpy as np from sklearn.metrics import jaccard_similarity_score y_pred = [0, 2, 1, 3,4] y_true = [0, 1, 2, 3,4] jaccard_similarity_score(y_true, y_pred) 0.5 jaccard_similarity_score(y_true, y_pred, normalize=False) 2可释方差值(Explained variance score)
from sklearn.metrics import explained_variance_score y_true = [3, -0.5, 2, 7] y_pred = [2.5, 0.0, 2, 8] explained_variance_score(y_true, y_pred)平均绝对误差(Mean absolute error)
from sklearn.metrics import mean_absolute_error y_true = [3, -0.5, 2, 7] y_pred = [2.5, 0.0, 2, 8] mean_absolute_error(y_true, y_pred)均方误差(Mean squared error)
from sklearn.metrics import mean_squared_error y_true = [3, -0.5, 2, 7] y_pred = [2.5, 0.0, 2, 8] mean_squared_error(y_true, y_pred)中值绝对误差(Median absolute error)
from sklearn.metrics import median_absolute_error y_true = [3, -0.5, 2, 7] y_pred = [2.5, 0.0, 2, 8] median_absolute_error(y_true, y_pred)R方值,确定系数
from sklearn.metrics import r2_score y_true = [3, -0.5, 2, 7] y_pred = [2.5, 0.0, 2, 8] r2_score(y_true, y_pred)参考文献
- python + sklearn ︱分类效果评估——acc、recall、F1、ROC、回归、距离
- sklearn中的模型评估