当前位置 : 主页 > 编程语言 > java >

pytorch教程 (一) -- 深度学习项目流程

来源:互联网 收集:自由互联 发布时间:2022-06-30
通常基于pytorch实现一个深度学习算法程序,需要有以下几步 深度学习流程 ​​1.处理数据​​ ​​2.创建模型​​ ​​3.优化模型参数​​ ​​4.训练模型​​ ​​5.测试​​ ​​

通常基于pytorch实现一个深度学习算法程序,需要有以下几步


深度学习流程

  • ​​1.处理数据​​
  • ​​2.创建模型​​
  • ​​3.优化模型参数​​
  • ​​4.训练模型​​
  • ​​5.测试​​
  • ​​6.保存模型​​
  • ​​7.加载模型​​


使用的库列表

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose
import matplotlib.pyplot as plt

1.处理数据

# Download training data from open datasets.
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)

# Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)
batch_size = 64

# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)

for X, y in test_dataloader:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break

2.创建模型

# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
nn.ReLU()
)

def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits

model = NeuralNetwork().to(device)
print(model)

3.优化模型参数

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)

4.训练模型

def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)

# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)

# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()

if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")

5.测试

def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Done!")

6.保存模型

torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")

7.加载模型

model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))classes = [
"T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot",
]

model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')


上一篇:计算机视觉PyTorch迁移学习 - (二)
下一篇:没有了
网友评论