对于数组应用于区间染色实现为On,而线段树是O(logn) 什么是线段树:对于一个二叉树,每一个节点存储的是一个线段或是一个区间相应的信息。 查询 更新 #pragma once#include cassert#includ
- 对于数组应用于区间染色实现为On,而线段树是O(logn)
- 什么是线段树:对于一个二叉树,每一个节点存储的是一个线段或是一个区间相应的信息。
#pragma once
#include <cassert>
#include <functional>
template<typename T>
class SegmentTree {
public:
SegmentTree() noexcept = default;
explicit SegmentTree(const T *const arr, const int n, std::function<T(T, T)> func) : data(new T[n]),
tree(new T[4 * n]),
size(n),
function(func) {
for (int i = 0; i < n; ++i) {
data[i] = arr[i];
}
//构建线段树 根索引为0,左边界为0,有边界为 size-1
buildSegmentTree(0, 0, size - 1);
}
~SegmentTree() noexcept {
delete[] data;
data = nullptr;
delete[] tree;
tree = nullptr;
}
constexpr int getSize() const noexcept {
return size;
}
T get(const int index) const {
assert(index >= 0 && index < size);
return data[index];
}
T query(const int queryL, const int queryR) {
assert(queryL >= 0 && queryL < size && queryR >= 0 && queryR < size && queryL <= queryR);
return query(0, 0, size - 1, queryL, queryR);
}
void set(const int index, const T &e) {
assert(index >= 0 && index < size);
data[index] = e;
set(0, 0, size - 1, index, e);
}
void print() const {
std::cout << "[";
for (int i = 0; i < size * 4; ++i) {
if (tree[i] != NULL) {
std::cout << tree[i];
} else {
std::cout << "0";
}
if (i != size * 4 - 1) {
std::cout << ", ";
}
}
std::cout << "]" << std::endl;
}
private:
void set(const int treeIndex, const int l, const int r, const int index, const T &e) {
//都叶子了,一定是它了,更新它
if (l == r) {
tree[treeIndex] = e;
return;
}
int mid = l + (r - l) / 2;
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
//要找的索引大于中间值,一定在右边
if (index >= mid + 1) {
set(rightTreeIndex, mid + 1, r, index, e);
} else if (index <= mid) { //否则在左边
set(leftTreeIndex, l, mid, index, e);
}
//更新...
tree[treeIndex] = function(tree[leftTreeIndex], tree[rightTreeIndex]);
}
//在以treeIndex为根的线段树[l...r]的范围里,搜索区间[queryL,queryR]的值
int query(const int treeIndex, const int l, const int r, const int queryL, const int queryR) {
//如果左右相同就找到了
if (l == queryL && r == queryR) {
return tree[treeIndex];
}
int mid = l + (r - l) / 2;
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
//如果查找的范围左边界大于中间
if (mid + 1 <= queryL) {
//那么就不用查找左边
return query(rightTreeIndex, mid + 1, r, queryL, queryR);
//如果查找的范围右边小于中间
} else if (mid >= queryR) {
//那么就不用查找右边
return query(leftTreeIndex, l, mid, queryL, queryR);
}
//如果查找的范围占用两个区间
T leftResult = query(leftTreeIndex, l, mid, queryL, mid);
T rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
return function(leftResult, rightResult);
}
void buildSegmentTree(const int treeIndex, const int left, const int right) {
//如果左右相等就说明递归到底
if (left == right) {
tree[treeIndex] = data[left];
return;
}
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
int mid = left + (right - left) / 2;
//递归左右孩子根为左右孩子索引,左右边界以中间为界
buildSegmentTree(leftTreeIndex, left, mid);
buildSegmentTree(rightTreeIndex, mid + 1, right);
//线段存储信息根据业务写相应的代码,以求和为例,
tree[treeIndex] = function(tree[leftTreeIndex], tree[rightTreeIndex]);
}
constexpr int leftChild(const int index) const noexcept {
return index * 2 + 1;
}
constexpr int rightChild(const int index) const noexcept {
return index * 2 + 2;
}
private:
std::function<T(T, T)> function;
T *tree;
T *data;
int size;
};
#include <iostream>
#include "SegmentTree.h"
int main() {
int nums[] = {-2, 0, 3, -5, 2, -1};
SegmentTree<int> *segmentTree = new SegmentTree<int>(nums, sizeof(nums) / sizeof(int), [](int a, int b) -> int {
return a + b;
});
std::cout << segmentTree->query(0,2) << std::endl;
std::cout << segmentTree->query(2,5) << std::endl;
std::cout << segmentTree->query(0,5) << std::endl;
segmentTree->print();
segmentTree->set(0,0);
segmentTree->print();
std::cout << segmentTree->query(0,2) << std::endl;
std::cout << segmentTree->query(2,5) << std::endl;
std::cout << segmentTree->query(0,5) << std::endl;
return 0;
}
输出
1
-1
-3
[-3, 1, -4, -2, 3, -3, -1, -2, 0, 0, 0, -5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[-1, 3, -4, 0, 3, -3, -1, 0, 0, 0, 0, -5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
3
-1
-1
LeetCode
307. 区域和检索 - 数组可修改
给你一个数组 nums ,请你完成两类查询。
- 其中一类查询要求 更新 数组 nums 下标对应的值
- 另一类查询要求返回数组 nums 中索引 left 和索引 right 之间( 包含 )的nums元素的 和 ,其中 left <= right
实现 NumArray 类:
- NumArray(int[] nums) 用整数数组 nums 初始化对象
- void update(int index, int val) 将 nums[index] 的值 更新 为 val
- int sumRange(int left, int right) 返回数组 nums 中索引 left 和索引 right 之间( 包含 )的nums元素的 和 (即,nums[left] + nums[left + 1], ..., nums[right])
class NumArray
{
public:
NumArray(vector<int> nums)
{
if (nums.size() > 0)
{
int *data = new int[nums.size()];
for (int i = 0; i < nums.size(); ++i)
{
data[i] = nums[i];
}
segmentTree = new SegmentTree<int>(data, nums.size(), [](int a, int b) -> int
{ return a + b; });
}
}
void update(int i, int val)
{
assert(segmentTree != nullptr);
segmentTree->set(i, val);
}
int sumRange(int i, int j)
{
assert(segmentTree != nullptr);
return segmentTree->query(i, j);
}
private:
template<typename T>
class SegmentTree {
public:
SegmentTree() noexcept = default;
explicit SegmentTree(const T *const arr, const int n, std::function<T(T, T)> func) : data(new T[n]),
tree(new T[4 * n]),
size(n),
function(func) {
for (int i = 0; i < n; ++i) {
data[i] = arr[i];
}
//构建线段树 根索引为0,左边界为0,有边界为 size-1
buildSegmentTree(0, 0, size - 1);
}
~SegmentTree() noexcept {
delete[] data;
data = nullptr;
delete[] tree;
tree = nullptr;
}
constexpr int getSize() const noexcept {
return size;
}
T get(const int index) const {
assert(index >= 0 && index < size);
return data[index];
}
T query(const int queryL, const int queryR) {
assert(queryL >= 0 && queryL < size && queryR >= 0 && queryR < size && queryL <= queryR);
return query(0, 0, size - 1, queryL, queryR);
}
void set(const int index, const T &e) {
assert(index >= 0 && index < size);
data[index] = e;
set(0, 0, size - 1, index, e);
}
void print() const {
std::cout << "[";
for (int i = 0; i < size * 4; ++i) {
if (tree[i] != NULL) {
std::cout << tree[i];
} else {
std::cout << "0";
}
if (i != size * 4 - 1) {
std::cout << ", ";
}
}
std::cout << "]" << std::endl;
}
private:
void set(const int treeIndex, const int l, const int r, const int index, const T &e) {
//都叶子了,一定是它了,更新它
if (l == r) {
tree[treeIndex] = e;
return;
}
int mid = l + (r - l) / 2;
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
//要找的索引大于中间值,一定在右边
if (index >= mid + 1) {
set(rightTreeIndex, mid + 1, r, index, e);
} else if (index <= mid) { //否则在左边
set(leftTreeIndex, l, mid, index, e);
}
//更新...
tree[treeIndex] = function(tree[leftTreeIndex], tree[rightTreeIndex]);
}
//在以treeIndex为根的线段树[l...r]的范围里,搜索区间[queryL,queryR]的值
int query(const int treeIndex, const int l, const int r, const int queryL, const int queryR) {
//如果左右相同就找到了
if (l == queryL && r == queryR) {
return tree[treeIndex];
}
int mid = l + (r - l) / 2;
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
//如果查找的范围左边界大于中间
if (mid + 1 <= queryL) {
//那么就不用查找左边
return query(rightTreeIndex, mid + 1, r, queryL, queryR);
//如果查找的范围右边小于中间
} else if (mid >= queryR) {
//那么就不用查找右边
return query(leftTreeIndex, l, mid, queryL, queryR);
}
//如果查找的范围占用两个区间
T leftResult = query(leftTreeIndex, l, mid, queryL, mid);
T rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR);
return function(leftResult, rightResult);
}
void buildSegmentTree(const int treeIndex, const int left, const int right) {
//如果左右相等就说明递归到底
if (left == right) {
tree[treeIndex] = data[left];
return;
}
int leftTreeIndex = leftChild(treeIndex);
int rightTreeIndex = rightChild(treeIndex);
int mid = left + (right - left) / 2;
//递归左右孩子根为左右孩子索引,左右边界以中间为界
buildSegmentTree(leftTreeIndex, left, mid);
buildSegmentTree(rightTreeIndex, mid + 1, right);
//线段存储信息根据业务写相应的代码,以求和为例,
tree[treeIndex] = function(tree[leftTreeIndex], tree[rightTreeIndex]);
}
constexpr int leftChild(const int index) const noexcept {
return index * 2 + 1;
}
constexpr int rightChild(const int index) const noexcept {
return index * 2 + 2;
}
private:
std::function<T(T, T)> function;
T *tree;
T *data;
int size;
};
SegmentTree<int> *segmentTree;
};