Special subset sums: meta-testing
Problem 106
Let S(A) represent the sum of elements in set A of size n. We shall call it a special sum set if for any two non-empty disjoint subsets, B and C, the following properties are true:
For this problem we shall assume that a given set contains n strictly increasing elements and it already satisfies the second rule.
Surprisingly, out of the 25 possible subset pairs that can be obtained from a set for which n = 4, only 1 of these pairs need to be tested for equality (first rule). Similarly, when n = 7, only 70 out of the 966 subset pairs need to be tested.
For n = 12, how many of the 261625 subset pairs that can be obtained need to be tested for equality?
NOTE: This problem is related to Problem 103 and Problem 105.
题解:
特殊的子集和:元检验
记S(A)是大小为n的集合A中所有元素的和。若任取A的任意两个非空且不相交的子集B和C都满足下列条件,我们称A是一个特殊的和集:
在这个问题中我们假定集合中包含有n个严格单调递增的元素,并且已知其满足第二个条件。
令人惊奇的是,当n = 4时,在所有可能的25组子集对中只有1组需要检验子集和是否相等(第一个条件)。同样地,当n = 7时,在所有可能的966组子集对中只有70组需要检验。
当n = 12时,在所有可能的261625组子集对中有多少组需要检验?
注意:此题和第103题及第105题有关。
题意有点别扭....你要手动写一下样例就明白了。
所有可能的25组子集对,就是 7 + 6 + 5 + 4 + 1 + 1 + 1 = 25。注意这些子集对都是非空的且不相交的。
所以有一组要验证S(B) ≠ S(C);也就是说,任意子集的和不相同,就是{1,4}和{2,3}这组子集对。
详细解释见代码:
#include<bits/stdc++.h>using namespace std;
int total = 0;
void solve (int n)
{
total=0;
//不算空集即 0**0这种
for (int x = 1; x < (1 << n); x++)
{
for (int y = 1; y < (1 << n); y++)
{
if ((x & y) == 0) //子集对 (x,y) 不相交
{
int d1 = 0, d2 = 0;
for (int j = 0; j < n; j++)
{
if ((x & (1 << j)) > 0) d1++; //统计与x有相交元素的子集
}
// cout<<"d1="<<d1<<endl;
for (int j = 0; j < n; j++)
{
if ((y & (1 << j)) > 0) d2++;//统计与y有相交元素的子集
}
//cout<<"d2="<<d2<<endl<<"--------"<<endl;
if (d1 == d2)
{
int t = 0;
bool ok1 = false;
bool ok2 = false;
for (int j = 0; j < n; j++)
{
if ((x & (1 << j)) > 0) t++;
if ((y & (1 << j)) > 0) t--;
if (t > 0) ok1 = true;
if (t < 0) ok2 = true;
// cout<<"ok1="<<ok1<<endl;
// cout<<"ok2="<<ok 2<<endl<<"-----"<<endl;
}
//统计需要检验的个数
if (ok1==true && ok2==true) total++;
else if(ok1==false && ok2==false) total++;
}
}
}
}
cout<<"ans="<<total/2<<endl;//除以 2 ,是因为有重复的
}
int main()
{
solve(2);
solve(3);
solve(4);
solve(7);
solve(12);
return 0;
}