当前位置 : 主页 > 编程语言 > python >

【预测模型-ELM预测】基于麻雀算法优化极限学习机预测附matlab代码

来源:互联网 收集:自由互联 发布时间:2022-09-29
1 内容介绍 一种基于麻雀搜索算法优化极限学习机的风电功率预测方法,具体包括如下步骤:步骤1,确定影响风电功率的主导影响因子;步骤2,构建麻雀搜索算法优化核极限学习机预

1 内容介绍

一种基于麻雀搜索算法优化极限学习机的风电功率预测方法,具体包括如下步骤:步骤1,确定影响风电功率的主导影响因子;步骤2,构建麻雀搜索算法优化核极限学习机预测模型,通过该模型对风电功率进行预测。本文解决了目前风电功率预测精度低,预测性能受自身参数影响较大的问题。

2 部分代码

function [fMin , bestX, Convergence_curve] = SSA(X, N, M, c, d, dim, fobj)


P_percent = 0.2;    % 发现者的种群规模占总种群规模的百分比


pNum = round(N*P_percent);    % 发现者数量20%


SD = pNum/2;      % 警戒者数量10%


ST = 0.8;           % 安全阈值

lb = c.*ones(1, dim);     % 下限

ub = d.*ones(1,dim);    % 上限

% 初始化

for i = 1:N

%     X(i, :) = lb + (ub - lb) .* rand(1, dim);

    fitness(i) = fobj(X(i, :));

end

pFit = fitness;

pX = X;                            % 与pFit相对应的个体最佳位置

[fMin, bestI] = min(fitness);      % fMin表示全局最优解

bestX = X(bestI, :);             % bestX表示全局最优位置


%% 迭代寻优

for t = 1 : M       

    [~, sortIndex] = sort(pFit);            % 排序

    

    [fmax, B] = max(pFit);

    worst = X(B, :);

    

    %% 发现者位置更新

    r2 = rand(1);

    if r2 < ST

        for i = 1:pNum      % Equation (3)

            r1 = rand(1);

            X(sortIndex(i), :) = pX(sortIndex(i), :)*exp(-(i)/(r1*M));

            X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);

            fitness(sortIndex(i)) = fobj(X(sortIndex(i), :));

        end

    else

        for i = 1:pNum

            X(sortIndex(i), :) = pX(sortIndex(i), :)+randn(1)*ones(1, dim);

            X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);

            fitness(sortIndex(i)) = fobj(X(sortIndex(i), :));

        end

    end

    

    [~, bestII] = min(fitness);

    bestXX = X(bestII, :);

    

    %% 跟随者位置更新

    for i = (pNum+1):N                     % Equation (4)

        A = floor(rand(1, dim)*2)*2-1;

        if i > N/2

            X(sortIndex(i), :) = randn(1)*exp((worst-pX(sortIndex(i), :))/(i)^2);

        else

            X(sortIndex(i), :) = bestXX+(abs((pX(sortIndex(i), :)-bestXX)))*(A'*(A*A')^(-1))*ones(1, dim);

        end

        X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);

        fitness(sortIndex(i)) = fobj(X(sortIndex(i), :));

    end

    

    %% 警戒者位置更新

    c = randperm(numel(sortIndex));

    b = sortIndex(c(1:SD));

    for j = 1:length(b)      % Equation (5)

        if pFit(sortIndex(b(j))) > fMin

            X(sortIndex(b(j)), :) = bestX+(randn(1, dim)).*(abs((pX(sortIndex(b(j)), :) -bestX)));

        else

            X(sortIndex(b(j)), :) = pX(sortIndex(b(j)), :)+(2*rand(1)-1)*(abs(pX(sortIndex(b(j)), :)-worst))/(pFit(sortIndex(b(j)))-fmax+1e-50);

        end

        X(sortIndex(b(j)), :) = Bounds(X(sortIndex(b(j)), :), lb, ub);

        fitness(sortIndex(b(j))) = fobj(X(sortIndex(b(j)), :));

    end

    

    for i = 1:N

        % 更新个体最优

        if fitness(i) < pFit(i) 

            pFit(i) = fitness(i);

            pX(i, :) = X(i, :);

        end

        % 更新全局最优

        if pFit(i) < fMin

            fMin = pFit(i);

            bestX = pX(i, :);

        end

    end

    Convergence_curve(t) = fMin;

    

    disp(['SSA: At iteration ', num2str(t), ' ,the best fitness is ', num2str(fMin)]);

end


%% 边界处理

function s = Bounds(s, Lb, Ub)

% 下界

temp = s;

I = temp < Lb;

temp(I) = Lb(I);


% 上界

J = temp > Ub;

temp(J) = Ub(J);

% 更新

s = temp;


3 运行结果

【预测模型-ELM预测】基于麻雀算法优化极限学习机预测附matlab代码_路径规划

【预测模型-ELM预测】基于麻雀算法优化极限学习机预测附matlab代码_路径规划_02

4 参考文献

[1]杨云, 王勇. 基于麻雀搜索优化深度极限学习机的入侵检测方法[J]. 微电子学与计算机, 2022(039-006).

[2]呼梦颖, 杨霈轶, 段建东,等. 基于麻雀搜索算法优化核极限学习机的风电功率预测方法:. 

部分理论引用网络文献,若有侵权联系博主删除。


网友评论