当前位置 : 主页 > 编程语言 > java >

深入浅出机器学习技法(一):线性支持向量机(LSVM)

来源:互联网 收集:自由互联 发布时间:2022-09-29
机器学习技法是机器学习基石的提升,在此系列中我们将讨论各类机器学习典型算法,包括支持向量机、决策树、随机森林、GBDT等等。 欢迎大家点赞、分享我的文章,关注我的微信公



深入浅出机器学习技法(一):线性支持向量机(LSVM)_二次规划




深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_02





机器学习技法是机器学习基石的提升,在此系列中我们将讨论各类机器学习典型算法,包括支持向量机、决策树、随机森林、GBDT等等。


欢迎大家点赞、分享我的文章,关注我的微信公众号。你们的支持就是我创作的动力!


还等什么?开始吧~


——前言




1


Large-Margin Separating Hyperplane


回顾一下我们之前介绍了线性分类(linear classification),对于线性可分的情况,我们可以使用PLA/pocket算法在平面或者超平面上把正负类分开。



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_03


例如对平面2D这种情况,我们可以找到一条直线,能将正类和负类完全分开。但是,这样的直线通常不止一条,如下图所示。那么,下图中的三条分类线都能将数据分开,但是哪条线更好呢?



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_04


这三条直线都是由PLA/pocket算法不断修正错误点而最终产生的,整个确定直线形状的过程是随机的。单从分类效果上看,这三条直线都满足要求,而且都满足VC bound要求,模型复杂度Ω(H)是一样的,即具有一定的泛化能力。但是,如果要选择的话,凭第一感觉,我们还是会选择第三条直线,感觉它的分类效果更好一些。那这又是为什么呢?

先给个简单解释,一般情况下,训练样本外的测量数据应该分布在训练样本附近,但与训练样本的位置有一些偏差。若要保证对未知的测量数据也能进行正确分类,最好让分类直线距离正类负类的点都有一定的距离。这样能让每个样本点附近的圆形区域是“安全”的。圆形区域越大,表示分类直线对测量数据误差的容忍性越高,越“安全”。



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_05


如上图所示,左边的点距离分类直线的最小距离很小,它的圆形区域很小。那么,这种情况下,分类线对测量数据误差的容忍性就很差,测量数据与样本数据稍有偏差,很有可能就被误分。而右边的点距离分类直线的最小距离更大一些,其圆形区域也比较大。这种情况下,分类线对测量数据误差的容忍性就相对来说大很多,不容易误分。也就是说,左边分类线和右边分类线的最大区别是对这类测量误差的容忍度不同。

那么,如果每一笔训练资料距离分类线越远的话,就表示分类型可以忍受更多的测量误差(noise)。我们之前在《机器学习基石》中介绍过,noise是造成过拟合(overfitting)的主要原因,而测量误差也是一种noise。所以,如果分类线对测量误差的容忍性越好的话,表示这是一条不错的分类线。那么,我们的目标就是找到这样一条最“健壮”的线,即距离数据点越远越好。



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_06


上面我们用圆形区域表示分类线能够容忍多少误差,也就相当于计算点到直线的距离。距离越大,表示直线越“胖”,越能容忍误差;距离越小,表示直线越“瘦”,越不能容忍误差。越胖越好(像杨贵妃那样的哦~)。



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_07


如何定义分类线有多胖,就是看距离分类线最近的点与分类线的距离,我们把它用margin表示。分类线由权重w决定,目的就是找到使margin最大时对应的w值。整体来说,我们的目标就是找到这样的分类线并满足下列条件:



深入浅出机器学习技法(一):线性支持向量机(LSVM)_二次规划_08



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_09


2


Standard Large-Margin Problem


要让margin最大,即让离分类线最近的点到分类线距离最大,我们先来看一下如何计算点到分类线的距离。



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_10



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_11


下面,利用图解的方式,详细推导如何计算点到分类平面的距离:



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_12


如上图所示,平面上有两个点:x’和x”。因为这两个点都在分类平面上,所以它们都满足:



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_13



深入浅出机器学习技法(一):线性支持向量机(LSVM)_二次规划_14



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_15


(x”-x’)是平面上的任一向量,(x”-x’)与w内积为0,表示(x”-x’)垂直于w,那么w就是平面的法向量。

现在,若要计算平面外一点x到该平面的距离,做法是只要将向量(x-x’)投影到垂直于该平面的方向(即w方向)上就可以了。那么,令(x”-x’)与w的夹角为θ,距离就可以表示为:



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_16



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_17



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_18



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_19



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_20


那么,我们的目标形式就转换为:



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_21



深入浅出机器学习技法(一):线性支持向量机(LSVM)_二次规划_22



深入浅出机器学习技法(一):线性支持向量机(LSVM)_二次规划_23


这样,目标形式就简化为:



深入浅出机器学习技法(一):线性支持向量机(LSVM)_二次规划_24



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_25



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_26



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_27



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_28


3


Support Vector Machine


现在,条件和目标变成:



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_29


现在,举个例子,假如平面上有四个点,两个正类,两个负类:



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_30



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_31



深入浅出机器学习技法(一):线性支持向量机(LSVM)_二次规划_32


最终,我们得到的条件是:



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_33


而我们的目标是:



深入浅出机器学习技法(一):线性支持向量机(LSVM)_二次规划_34



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_35



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_36


最终我们得到的矩的表达式为:



深入浅出机器学习技法(一):线性支持向量机(LSVM)_二次规划_37


Support Vector Machine(SVM)这个名字从何而来?为什么把这种分类面解法称为支持向量机呢?这是因为分类面仅仅由分类面的两边距离它最近的几个点决定的,其它点对分类面没有影响。决定分类面的几个点称之为支持向量(Support Vector),好比这些点“支撑”着分类面。而利用Support Vector得到最佳分类面的方法,称之为支持向量机(Support Vector Machine)。

下面介绍SVM的一般求解方法。先写下我们的条件和目标:



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_38


这是一个典型的二次规划问题,即Quadratic Programming(QP)。因为SVM的目标是关于w的二次函数,条件是关于w和b的一次函数,所以,它的求解过程还是比较容易的,可以使用一些软件(例如Matlab)自带的二次规划的库函数来求解。下图给出SVM与标准二次规划问题的参数对应关系:



深入浅出机器学习技法(一):线性支持向量机(LSVM)_二次规划_39


那么,线性SVM算法可以总结为三步:

  • 计算对应的二次规划参数Q,p,A,c
  • 根据二次规划库函数,计算b,w
  • 将b和w代入gSVMgSVM,得到最佳分类面



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_40


这种方法称为Linear Hard-Margin SVM Algorithm。如果是非线性的,例如包含x的高阶项,那么可以使用我们之前在《机器学习基石》课程中介绍的特征转换的方法,先作zn=Φ(xn)的特征变换,从非线性的x域映射到线性的z域空间,再利用Linear Hard-Margin SVM Algorithm求解即可。


4


Reasons behind Large-Margin Hyperplane



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_41



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_42


从另一方面来看,Large-Margin会限制Dichotomies的个数。这从视觉上也很好理解,假如一条分类面越“胖”,即对应Large-Margin,那么它可能shtter的点的个数就可能越少:



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_43


之前的《机器学习基石》课程中介绍过,Dichotomies与VC Dimension是紧密联系的。也就是说如果Dichotomies越少,那么复杂度就越低,即有效的VC Dimension就越小,得到Eout≈Ein,泛化能力强。



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_44



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_45



深入浅出机器学习技法(一):线性支持向量机(LSVM)_数据_46



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_47



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_48



深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_49


5


总结


本节课主要介绍了线性支持向量机(Linear Support Vector Machine)。我们先从视觉角度出发,希望得到一个比较“胖”的分类面,即满足所有的点距离分类面都尽可能远。然后,我们通过一步步推导和简化,最终把这个问题转换为标准的二次规划(QP)问题。二次规划问题可以使用Matlab等软件来进行求解,得到我们要求的w和b,确定分类面。这种方法背后的原理其实就是减少了dichotomies的种类,减少了有效的VC Dimension数量,从而让机器学习的模型具有更好的泛化能力。

如果你喜欢我的文章的话,可以赞赏,也可以点赞、留言或者分享到朋友圈。你的支持就是我创作的动力哦~




深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_50


长按二维码扫描关注​

红色石头的机器学习之路




深入浅出机器学习技法(一):线性支持向量机(LSVM)_机器学习基石_51




【本文由:高防cdn http://www.558idc.com/gfcdn.html 复制请保留原URL】
网友评论