当前位置 : 主页 > 编程语言 > python >

61_sqlalchemy基本使用

来源:互联网 收集:自由互联 发布时间:2022-10-14
目录 ​ ​​ 1 、 declare a mapping : 2 ​​ ​ ​​ 2 、 connecting : 2 ​​ ​ ​​ 3 、 create a schema : 3 ​​ ​ ​​ 4 、 creating a session : 4 ​​ ​ ​​ 5 、 create an instance of the mapped



目录

​​1declare a mapping 2​​

​​2connecting 2​​

​​3create a schema 3​​

​​4creating a session 4​​

​​5create an instance of the mapped class 4​​

​​6adding and updating 6​​




SQLAlchemy:

是一个ORM框架;

大量使用元编程;

编程时,先对象&关系映射,才能操作DB,已成为工业标准;


​​https://www.sqlalchemy.org/​​

​​https://docs.sqlalchemy.org/en/latest/​​ #Read this first

​​https://docs.sqlalchemy.org/en/latest/orm/tutorial.html​​


pip install sqlalchemy pymysql

pip show sqlalchemy

61_sqlalchemy基本使用_mysql



> import sqlalchemy

> sqlalchemy.__version__ #version check

61_sqlalchemy基本使用_sqlalchemy_02



开发中,一般都采用ORM框架,这样就可使用对象操作表了;

定义表映射的类,使用Column的描述器定义类属性,使用ForeignKey定义外键约束;

如果在一个对象中,想查看其它表对象的内容,就要使用relationship来定义关系;


是否使用FK?

支持,力挺派,能使数据保证完整性、一致性;

不支持,嫌弃派,开发难度增加,大量数据时影响插入、修改、删除的效率;

通常要在业务层保证数据一致性(事务);


注:

账号密码授权,若为前端用户,仅用来查数据,用grant select即可,不要grant all;

UML,统一建模语言;

navicat mysql,右键库或表,转储SQL文件,结构和数据;若仅导出结构,导出前要删除相关表中数据;

oralce中没有自增,用到sequence,from sqlalchemy import Sequence



1、declare a mapping:​

创建映射:

创建基类Base,便于实体类继承;

创建实体类,Student表;

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base() #基类,创建基类,一次性的



from sqlalchemy import Column, Integer, String


class Student(Base): #实体类,declare a mapping

__tablename__ = 'student' #指定表名,必须写,防止忘记对应的表

id = Column('id', Integer, primary_key=True, autoincrement=True)) #定义属性对应字段,第1参数是字段名,如果和属性名一致可省,如果和属性名不一致要指定;Column类指定对应的字段,必须指定,Column即上例的Field;此处'id'可省,Integer为type不能省

name = Column(String(64), nullable=False)

age = Column(Integer)


def __repr__(self):

return '<{} id:{} name:{} age:{}>'.format(self.__class__.__name__, self.id, self.name, self.age)


__str__ = __repr__



2、connecting:​

数据库连接的事情,交给引擎;

echo=True,引擎是否打印执行的语句,调试时打开很方便;


mysqldb的连接:

mysql+mysqldb://<user>:<password>@<host>[:port]/<dbname>

engine = sqlalchemy.create_engine('mysql+mysqldb://root:rootqazwsx@10.113.129.2:3306/test1')


pymysql的连接:

mysql+pymysql://<username>:<password>@<host>:<port>/<dbname>[?<options>],options为与DB连接相关的选项

engine = sqlalchemy.create_engine('mysql+pymysql://root:rootqazwsx@10.113.129.2:3306/test1')


​​https://docs.sqlalchemy.org/en/latest/core/engines.html​​

engine-configuration:

61_sqlalchemy基本使用_sqlalchemy_03


注:

内部使用了连接池;

dialect,方言,sql差异;


from sqlalchemy import create_engine


host = '10.113.129.2'

port = 3306

user = 'root'

password = 'rootqazwsx'

database = 'test1'

conn_str = 'mysql+pymysql://{}:{}@{}:{}/{}'.format(user, password, host, port, database)


# engine = create_engine('mysql+pymysql://root:rootqazwsx@10.113.129.2:3306/test1', echo=True) #

engine = create_engine(conn_str, echo=True) #引擎,管理连接池,connecting;echo=True,执行的语句是否打印,可在配置文件中全局设置,调试时打开



3、create a schema:​

Base.metadata.drop_all(engine) #删除继承自Base的所有表

Base.metadata.create_all(engine) #create a schema,创建继承自Base的所有表;Base.metadata中有一张表记录着所有用Base创建的实体类(实体类继承自Base),遍历所有实体类,将查到的定义信息填到创建表的语句中;engine的echo=True,打开,执行后会有建表语句;创建表,共用的功能,而子类上是个性化的功能


注:

生产很少这样创建表,都是系统上线时由脚本生成,如用navicat mysql在测试里右键库或表,转储SQL文件,再导入到生产里;

生产很少删除表,废弃都不能删除;



4、creating a session:​

在一个会话中操作数据库,会话建立在连接上,连接被引擎管理;

from sqlalchemy.orm import sessionmaker


Session = sessionmaker(bind=engine) #方式一;返回类;另,autoflush=False,autocommit=False

session = Session()实例化,session.add(),session.add_all(),session.commit(),session.rollback(),session.query(),session.cursor,session.execute()执行原生sql

# Session = sessionmaker() #方式二

# session = Session(bind=engine)


注:

class sessionmaker(_SessionClassMethods):

def __init__(self, bind=None, class_=Session, autoflush=True,

autocommit=False,

expire_on_commit=True,

info=None, **kw):



5、create an instance of the mapped class:​


例,增:

try:

stu1 = Student()

stu1.name = 'tom' #属性赋值

stu1.age = 20

# student.id = 100 #有自增字段和有默认值的可不加

# session.add(stu1)状态为pending

stu2 = Student(name='jerry', age=18) #构造的时候传入

session.add_all([stu1, stu2])状态为pending


# lst = []

# for i in range(10):

# stu = Student()

# stu.name = 'jessica' + str(i)

# stu.age = 20 + i

# lst.append(stu)

# session.add_all(lst)


session.commit()

except Exception as e:

print(e)

session.rollback()

finally:

pass

输出:

2018-10-10 17:04:18,319 INFO sqlalchemy.engine.base.Engine SHOW VARIABLES LIKE 'sql_mode'

2018-10-10 17:04:18,320 INFO sqlalchemy.engine.base.Engine {}

2018-10-10 17:04:18,333 INFO sqlalchemy.engine.base.Engine SELECT DATABASE()

2018-10-10 17:04:18,333 INFO sqlalchemy.engine.base.Engine {}

2018-10-10 17:04:18,355 INFO sqlalchemy.engine.base.Engine show collation where `Charset` = 'utf8' and `Collation` = 'utf8_bin'

2018-10-10 17:04:18,355 INFO sqlalchemy.engine.base.Engine {}

2018-10-10 17:04:18,371 INFO sqlalchemy.engine.base.Engine SELECT CAST('test plain returns' AS CHAR(60)) AS anon_1

2018-10-10 17:04:18,371 INFO sqlalchemy.engine.base.Engine {}

2018-10-10 17:04:18,382 INFO sqlalchemy.engine.base.Engine SELECT CAST('test unicode returns' AS CHAR(60)) AS anon_1

2018-10-10 17:04:18,382 INFO sqlalchemy.engine.base.Engine {}

2018-10-10 17:04:18,393 INFO sqlalchemy.engine.base.Engine SELECT CAST('test collated returns' AS CHAR CHARACTER SET utf8) COLLATE utf8_bin AS anon_1

2018-10-10 17:04:18,393 INFO sqlalchemy.engine.base.Engine {}

2018-10-10 17:04:18,414 INFO sqlalchemy.engine.base.Engine DESCRIBE `student`

2018-10-10 17:04:18,414 INFO sqlalchemy.engine.base.Engine {}

2018-10-10 17:04:18,430 INFO sqlalchemy.engine.base.Engine

DROP TABLE student

2018-10-10 17:04:18,430 INFO sqlalchemy.engine.base.Engine {}

2018-10-10 17:04:18,447 INFO sqlalchemy.engine.base.Engine COMMIT

2018-10-10 17:04:18,468 INFO sqlalchemy.engine.base.Engine DESCRIBE `student`

2018-10-10 17:04:18,468 INFO sqlalchemy.engine.base.Engine {}

2018-10-10 17:04:18,482 INFO sqlalchemy.engine.base.Engine ROLLBACK

2018-10-10 17:04:18,494 INFO sqlalchemy.engine.base.Engine

CREATE TABLE student (

id INTEGER NOT NULL AUTO_INCREMENT,

name VARCHAR(64) NOT NULL,

age INTEGER,

PRIMARY KEY (id)

)

2018-10-10 17:04:18,494 INFO sqlalchemy.engine.base.Engine {}

2018-10-10 17:04:18,537 INFO sqlalchemy.engine.base.Engine COMMIT

2018-10-10 17:04:18,562 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)

2018-10-10 17:04:18,563 INFO sqlalchemy.engine.base.Engine INSERT INTO student (name, age) VALUES (%(name)s, %(age)s)

2018-10-10 17:04:18,563 INFO sqlalchemy.engine.base.Engine {'age': 20, 'name': 'tom'}

2018-10-10 17:04:18,574 INFO sqlalchemy.engine.base.Engine INSERT INTO student (name, age) VALUES (%(name)s, %(age)s) #用了参数化查询

2018-10-10 17:04:18,574 INFO sqlalchemy.engine.base.Engine {'age': 18, 'name': 'jerry'}

2018-10-10 17:04:18,586 INFO sqlalchemy.engine.base.Engine COMMIT



6、adding and updating:​

CRUD操作;


每一个实体都有一个状态属性_sa_instance_state,其类型是sqlalchemy.orm.state.InstanceState,可使用sqlalchemy.inspect(entity)函数查看状态;

常见的状态有:

transient(短暂的,路过的),实体类尚未加入到session中,同时并没有保存到数据库中;

pending(未决定的,行将发生的),transient的实体被add()到session中,状态切换为pending,但还未flush到DB中;

persistent(持久稳固的,坚持的,固执的),session中的实体对象对应着DB中的真实记录,pending状态在提交成功后变为persistent状态,或查询成功返回的实体也是persistent状态;

deleted(已删除的),实体被删除且已flush但未commit完成,事务提交成功了,实体变成detached,事务失败返回persistent状态;

detached(单独的,冷漠的,超然而客观的),删除成功的实体进入这个状态;


新建一个实体,状态是transient临时的;

一旦add()后,由transient-->pending;

成功commit()后,由pending-->persistent;

成功查询返回的实体对象,也是persistent;


persistent状态的实体,依然是persistent状态;

persistent状态的实体,删除后,已flush但没commit(),转为deleted,事务成功提交,转为detached,事务提交失败,转为persistent;

只有在persistent状态的实体,才能delete和update,即删除、修改操作,;



例,commit()后的增:

try:

stu1 = Student()

stu1.name = 'tom'

stu1.age = 20

# student.id = 100

print(stu1.id)

session.add(stu1)

# stu2 = Student(name='jerry', age=18)

# session.add_all([stu1, stu2])

session.commit()


print('~~~~~~~~~~~~~~~~~~~~~~~~~~~')

print('@@@@@@@', stu1.id)

stu1.age = 22 #session.commit()后再改,会先查询

session.add(stu1) #再次session.add()和session.commit(),由于id为PK且自增,无论有无stu1.age=22都会新增一条记录;若id不是自增,有stu1.age=22则是update一条记录

session.commit() #始终与状态有关,感知到stu1有变化才会提交,能否提交成功看stu1有无变化,有变化了才提交(id为autoincrement,此例只要执行就会新增一条记录);stu1主键没有值,就是新增,主键有值,就是找到对应的记录修改

except Exception as e:

print(e)

session.rollback()

finally:

pass

输出:

……

2018-10-10 21:20:13,812 INFO sqlalchemy.engine.base.Engine {}

None

2018-10-10 21:20:13,839 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)

2018-10-10 21:20:13,840 INFO sqlalchemy.engine.base.Engine INSERT INTO student (name, age) VALUES (%(name)s, %(age)s)

2018-10-10 21:20:13,841 INFO sqlalchemy.engine.base.Engine {'age': 20, 'name': 'tom'}

2018-10-10 21:20:13,852 INFO sqlalchemy.engine.base.Engine COMMIT

~~~~~~~~~~~~~~~~~~~~~~~~~~~

2018-10-10 21:20:13,881 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)

2018-10-10 21:20:13,881 INFO sqlalchemy.engine.base.Engine SELECT student.id AS student_id, student.name AS student_name, student.age AS student_age

FROM student

WHERE student.id = %(param_1)s

2018-10-10 21:20:13,881 INFO sqlalchemy.engine.base.Engine {'param_1': 16}

@@@@@@@ 16

2018-10-10 21:20:13,894 INFO sqlalchemy.engine.base.Engine UPDATE student SET age=%(age)s WHERE student.id = %(student_id)s

2018-10-10 21:20:13,894 INFO sqlalchemy.engine.base.Engine {'age': 22, 'student_id': 16}

2018-10-10 21:20:13,909 INFO sqlalchemy.engine.base.Engine COMMIT


例,简单查询:

try:

queryobj = session.query(Student).filter(Student.id==8) #query()方法将实体类传入,返回类对象(是可迭代对象,查看源码有__iter__()),这时候并不查询,迭代它就执行sql来查询数据库,封装数据到指定类的实例;get()方法使用主键查询,返回一条传入类的一个实例

# queryobj = session.query(Student) #无条件

for i in queryobj:

print('########', i)

except Exception as e:

print(e)

输出:

……

2018-10-10 22:42:32,931 INFO sqlalchemy.engine.base.Engine SELECT student.id AS student_id, student.name AS student_name, student.age AS student_age

FROM student

WHERE student.id = %(id_1)s

2018-10-10 22:42:32,931 INFO sqlalchemy.engine.base.Engine {'id_1': 8}

######## <Student id:8 name:tom age:26>


例,改,错误示例:

try:

stu1 = Student()

stu1.id = 2 #这种不是改,而是是一个全新的stu1,如果该id已有,会PK冲突;正确改的做法,先查再改,得到PK才能改

stu1.name = 'jerry'

stu1.age = 28

session.add(stu1)

session.commit()

except Exception as e:

print(e)

session.rollback()

finally:

pass

输出:

2018-10-11 08:07:21,772 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)

2018-10-11 08:07:21,773 INFO sqlalchemy.engine.base.Engine INSERT INTO student (id, name, age) VALUES (%(id)s, %(name)s, %(age)s)

2018-10-11 08:07:21,773 INFO sqlalchemy.engine.base.Engine {'age': 28, 'id': 2, 'name': 'jerry'}

2018-10-11 08:07:21,785 INFO sqlalchemy.engine.base.Engine ROLLBACK

(pymysql.err.IntegrityError) (1062, "Duplicate entry '2' for key 'PRIMARY'") [SQL: 'INSERT INTO student (id, name, age) VALUES (%(id)s, %(name)s, %(age)s)'] [parameters: {'age': 28, 'id': 2, 'name': 'jerry'}]


例,改:

先查回来,修改后,再提交;

改不能改PK字段;

先SELECT再UPDATE;

try:

stu1 = session.query(Student).get(2)

print('$$$$$$$', stu1)

stu1.name = 'jowin'

stu1.age = 28

print('#######', stu1)

session.add(stu1)

session.commit()

except Exception as e:

print(e)

session.rollback()

finally:

pass

输出:

2018-10-11 08:39:56,595 INFO sqlalchemy.engine.base.Engine SELECT student.id AS student_id, student.name AS student_name, student.age AS student_age

FROM student

WHERE student.id = %(param_1)s

2018-10-11 08:39:56,595 INFO sqlalchemy.engine.base.Engine {'param_1': 2}

$$$$$$$ <Student id:2 name:tom age:24>

####### <Student id:2 name:jowin age:28>

2018-10-11 08:39:56,607 INFO sqlalchemy.engine.base.Engine UPDATE student SET name=%(name)s, age=%(age)s WHERE student.id = %(student_id)s

2018-10-11 08:39:56,608 INFO sqlalchemy.engine.base.Engine {'age': 28, 'student_id': 2, 'name': 'jowin'}

2018-10-11 08:39:56,619 INFO sqlalchemy.engine.base.Engine COMMIT


例,删,错误示例:

try:

stu1 = Student(id=2, name='sam', age=26)

session.delete(stu1)

session.commit()

except Exception as e:

print(e)

session.rollback()

finally:

pass

输出:

Instance '<Student at 0xa59438>' is not persisted #未持久的异常


例,删:

正确做法,先查再删;

from sqlalchemy import inspect

try:

stu1 = session.query(Student).get(2)

session.delete(stu1)

print('$$$$$$$$$$$$', inspect(stu1))

session.commit()

print('##########', inspect(stu1))

except Exception as e:

print(e)

session.rollabck()

finally:

pass

输出:

2018-10-11 08:52:12,317 INFO sqlalchemy.engine.base.Engine SELECT student.id AS student_id, student.name AS student_name, student.age AS student_age

FROM student

WHERE student.id = %(param_1)s

2018-10-11 08:52:12,318 INFO sqlalchemy.engine.base.Engine {'param_1': 2}

$$$$$$$$$$$$ <sqlalchemy.orm.state.InstanceState object at 0x000000000401B400>

2018-10-11 08:52:12,330 INFO sqlalchemy.engine.base.Engine DELETE FROM student WHERE student.id = %(id)s

2018-10-11 08:52:12,330 INFO sqlalchemy.engine.base.Engine {'id': 2}

2018-10-11 08:52:12,342 INFO sqlalchemy.engine.base.Engine COMMIT

########## <sqlalchemy.orm.state.InstanceState object at 0x000000000401B400>


例,删:

from sqlalchemy import inspect


def show(entity):

ins = inspect(entity)

print('~~~~~~~~~~~~~~~', ins.transient, ins.pending, ins.persistent, ins.detached)


try:

# print('~~~~~~~~~~~~~', Student.__dict__)

stu1 = session.query(Student).get(4)

session.delete(stu1)

# ins = inspect(stu1)

# print('$$$$$$$$$$$$', ins)

show(stu1)

session.commit()

# ins = inspect(stu1)

# print('##########', ins)

show(stu1)

except Exception as e:

print(e)

session.rollabck()

finally:

pass

输出:

018-10-11 14:40:28,111 INFO sqlalchemy.engine.base.Engine SELECT student.id AS student_id, student.name AS student_name, student.age AS student_age

FROM student

WHERE student.id = %(param_1)s

2018-10-11 14:40:28,111 INFO sqlalchemy.engine.base.Engine {'param_1': 4}

~~~~~~~~~~~~~~~ False False True False

2018-10-11 14:40:28,126 INFO sqlalchemy.engine.base.Engine DELETE FROM student WHERE student.id = %(id)s

2018-10-11 14:40:28,126 INFO sqlalchemy.engine.base.Engine {'id': 4}

2018-10-11 14:40:28,152 INFO sqlalchemy.engine.base.Engine COMMIT

~~~~~~~~~~~~~~~ False False False True




总结:


config.py

USERNAME = 'blog'

PASSWD = 'blog'

IP = '10.10.103.8'

PORT = '3306'

DBNAME = 'blog'

PARAMS = 'charset=utf8mb4'

URL = 'mysql+pymysql://{}:{}@{}:{}/{}?{}'.format(USERNAME, PASSWD, IP, PORT, DBNAME, PARAMS)

DB_DEBUG = True



models.py

from . import config

from sqlalchemy import create_engine

from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy import Column, Integer, String, BigInteger, DateTime

from sqlalchemy import ForeignKey, UniqueConstraint, PrimaryKeyConstraint

from sqlalchemy.orm import relationship, sessionmaker

from sqlalchemy.dialects.mysql import LONGTEXT, TINYINT


Base = declarative_base()


class User(Base):创建表

__tablename__ = 'user'

id = Column(Integer, primary_key=True, autoincrement=True)

name = Column(String(48), nullable=False)

password = Column(String(128), nullable=False)

email = Column(String(64), nullable=False, unique=True)


def __repr__(self):

return '<User (id={}, name={}, email={})>'.format(self.id, self.name, self.email)



engine = create_engine(config.URL, echo=config.DB_DEBUG)


def create_all():

Base.metadata.create_all(engine)一旦使用该方法将模型映射到数据库后,即使改变了模型的字段,也不会重新映射了


def drop_all():

Base.metadata.drop_all(engine)


Session = sessionmaker(bind=engine)

session = Session()使用orm对DB操作必须通过session对象实现



注:

conn = engine.connect() #调用引擎的connect()得到一个对象

result = conn.execute('select version()') #通过conn对象就可对DB进行操作

print(result.fetchone())



Column常用属性:

default: 默认值

nullable: 是否可空

primary_key: 是否为主键

unique: 是否唯一

autoincrement: 是否自增长

name: 该属性再数据库中的字段映射

onupdate: 当数据更新时会自动使用这个属性,比如update_time = Colum(DateTime, notallow=datetime.now, default=datetime.now)



常用数据类型:

Integer: 整型

Float: 浮点型,后面只会保留4位小数,会有精度丢失问题,占据32位

Double: 双精度浮点类型,占据64位,也会存在精度丢失问题

DECIMAL: 定点类型,解决浮点类型精度丢失问题;如果精度要求高,比如金钱,则适合用此类型

Boolean: 传递True/False进行

enum: 枚举类型

Date: 传递datetime.date()进去

Datetime: 传递datetime.datetme()进去

Time: 传递datetime.time()进去

String: 字符类型,使用时需要指定长度,区别于Text类型

Text: 文本类型,一般可以存储6w多个字符

LONGTEXT: 长文本类型

from sqlalchemy.dialects.mysql import LONGTEXT

因为LONGTEXT只在MySQL数据库中存在




上一篇:盘点5个常用的Python数据科学库!
下一篇:没有了
网友评论