当前位置 : 主页 > 编程语言 > python >

关于matplotlib及相关cmap参数的取值方式

来源:互联网 收集:自由互联 发布时间:2023-01-30
目录 matplotlib及相关cmap参数的取值 matplotlib中各种图形参数解释 柱状图bar的使用 散点图scatter的使用 折线图plot的使用 箱型图boxplot的使用 饼图pie的使用 matplotlib及相关cmap参数的取值 在
目录
  • matplotlib及相关cmap参数的取值
  • matplotlib中各种图形参数解释
    • 柱状图bar的使用
    • 散点图scatter的使用
    • 折线图plot的使用
    • 箱型图boxplot的使用
    • 饼图pie的使用

matplotlib及相关cmap参数的取值

在matplotlib中对于图片的显示有如下方法(这不是重点), 其中有cmap=‘binary’的参数。

plt.imshow(imgs[i].reshape(28, 28), cmap='binary')
#或如下:也可以达到相同的效果
plt.imshow(imgs[i].reshape(28, 28), cmap=plt.get_cmap('binary'))

这 是对显示颜色参数的定义,它可以有很多渐变色可以选择:

具体取值详细参见:

https://matplotlib.org/users/colormaps.html

https://matplotlib.org/examples/color/colormaps_reference.html

matplotlib中各种图形参数解释

柱状图bar的使用

matplotlib.pyplot.bar(left, height, alpha=1, width=0.8, color=, edgecolor=, label=, lw=3)
  • left: x轴的位置序列,一般采用range函数产生一个序列,但是有时候可以是一个字符串
  • height: y轴的数值序列,也就是柱形图的高度,一般就是我们需要显示的数据
  • alpha: 透明度,值越小越透明
  • width: 为柱形图的宽度,一般是0.8就行
  • colorfacecolor: 柱形图填充的颜色
  • edgecolor: 图形边缘颜色
  • label: 解释每个图像代表的含义,这个参数是为legend()函数做铺垫的,表示该次bar的标签。
  • linewidth or linewidths or lw: 边缘or线的宽

散点图scatter的使用

plt.scatter(x, y, s=20, c=None, marker=‘o', cmap=None, norm=None, alpha=None, linewidths=None, edgecolors=None
  • x: 指定散点图的x轴数据
  • y: 指定散点图的y轴数据
  • s: 指定散点图点的大小,默认为20,通过新传入的变量,实现气泡图的绘制
  • c: 指定散点图点的颜色,默认为蓝色
  • marker: 指定散点图点的形状,默认为圆形
  • cmap: 指定色 图,只有当c参数是一个浮点型的数组时才起作用
  • norm: 指定数据亮度, 标准化到0~1之间,使用该参数仍需要c为浮点型的数组
  • vminvmax: 亮度设置,与norm类似,如果使用了norm则该参数无效
  • alpha: 设置散点的透明度
  • edgecolors: 设置散点边界线的颜色
  • linewidths: 设置散点边界线的粗细

折线图plot的使用

plt.plot(x, y, color=, linewidth=,linestyle=, label=, marker=,)
  • x,y: array表示x轴与y轴对应的数据
  • color: 表示折线的颜色
  • marker: 表示这线上数据点处的类型
  • linestyle: 表示折线的类型
  • linewidth: 表示折线的粗细
  • alpha: 表示电的透明度
  • label: 数据图例内容

箱型图boxplot的使用

matplotlib.pyplot.boxplot(x, north=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, filerprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None)
  • x: 指定要绘制箱型图的数据
  • north: 是否是凹凸的形式展现箱线图,默认非凹凸
  • sym: 指定异常点的形状,默认为+号表示
  • vert: 是否需要将箱线图垂直摆放,默认垂直摆放
  • whis: 指定上下须与上下四分位的距离,默认为1.5倍的四分位差
  • positions: 指定箱线图的位置,默认为[0, 1, 2,…]
  • widths: 指定箱线图的宽度,默认为0.5
  • patch_artist: 是否填充箱体的颜色
  • meanline: 是否用线的形式表示均值,默认用点来表示
  • showmeans: 是否显示均值,默认不显示
  • showcaps: 是否显示箱线图顶端和末端的两条线,默认显示
  • showfliers: 是否显示异常值,默认显示
  • boxprops: 设置箱体的属性,如边框色、填充色等
  • labels: 为箱线图添加标签,类似于图例的使用
  • filerprops: 设置异常值的属性,如异常点的形状、大小、填充色等
  • medianprops: 设置中位数的属性,如线的类型、粗细等
  • meanprops: 设置均值的属性,如点的大小、颜色等
  • capprops: 设置箱线图顶端和末端线条的属性,如颜色、粗细等
  • whiskerprops: 设置须的属性,如颜色、粗细、线的类型等。

饼图pie的使用

matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None, radius=None, counterclock=True, wedgeprops=None, textprops=None, center=(0, 0), frame=False)
  • x: 指定绘图的数据
  • explode: 指定饼图某些部分的突出显示,即呈现爆炸式
  • labels: 为饼图添加标签说明,类似于图例说明
  • colors: 指定饼图的填充色
  • autopct: 自动添加百分比显示,可以采用格式化的方法显示
  • pctdistance: 设置百分比标签与圆心的距离
  • shadow: 是否添加饼图的阴影效果
  • labeldistance: 设置各扇形标签(图例)与圆心的距离
  • startangle: 设置饼图的初始摆放角度
  • radius: 设置饼图的半径大小
  • counterclock: 是否让饼图按逆时针顺序呈现
  • wedgeprops: 设置饼图中文本的属性,如字体大小、颜色等
  • center: 指定饼图的中心点位置,默认为原点
  • frame: 是否要显示饼图背后的图框,如果设置为True的话,需要同时控制图框x轴、y轴的范围和饼图的中心位置。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持自由互联。

上一篇:Python中八种数据导入方法总结
下一篇:没有了
网友评论