当前位置 : 主页 > 编程语言 > python >

Python Opencv实战之文字检测OCR

来源:互联网 收集:自由互联 发布时间:2023-01-30
目录 1.相关函数的讲解 2.代码展示 Detecting Words Detecting ONLY Digits 3.问题叙述 4.image_to_data()配置讲解 5.项目拓展 6.总结与评价 1.相关函数的讲解 image_to_data()的输出结果是表格形式,
目录
  • 1.相关函数的讲解
  • 2.代码展示
    • Detecting Words
    • Detecting ONLY Digits
  • 3.问题叙述
    • 4.image_to_data()配置讲解
      • 5.项目拓展
        • 6.总结与评价

          1.相关函数的讲解

          image_to_data()的输出结果是表格形式,输出变量的类型依旧是字符串。

          你会得到一个这样的列表['level', 'page_num', 'block_num', 'par_num', 'line_num', 'word_num', 'left', 'top', 'width', 'height', 'conf', 'text'],我们逐个解释下:

          • level,当前项的层级;
          • page_num,当前项所属页,一般情况下,单张图片的内容均会被分在同一个页;
          • block_num ,当前项所属块,Tesseract会将图像分割为多个不同的block,block会出现1,2,3……等等值;   
          • par_num,当前图像中文字的段落分类;
          • line_num,当前项所属行;
          • word_num,为同一行中当前项所属的单词序号;
          • left\ top\ width\ height,分别为当前项所在矩形区域的左上角坐标、宽度和高度;
          • conf,当前检测字符的置信度,表示项无文字,值为-1,若Tesseract认为当前区域有文字,则其值得范围为0~100;
          • text,即为当前项的文本,若无文字此项为空。

          那么关于enumerate()函数,大家可以看看此文。

          详解Python中enumerate函数的使用

          2.代码展示

          Detecting Words

          import cv2
          import pytesseract
          import numpy as np
          from PIL import ImageGrab
          import time
           
           
          pytesseract.pytesseract.tesseract_cmd = 'E:\pythonProject\Github\Tesseract-OCR\\tesseract.exe'
          img = cv2.imread('1.png')
          img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
           
          ##############################################
          ##### Detecting Words  ######
          ##############################################
           #[   0          1           2           3           4          5         6       7       8        9        10       11 ]
           #['level', 'page_num', 'block_num', 'par_num', 'line_num', 'word_num', 'left', 'top', 'width', 'height', 'conf', 'text']
           boxes = pytesseract.image_to_data(img)
           for a,b in enumerate(boxes.splitlines()):
                  print(b)
                   if a!=0:
                       b = b.split()
                       if len(b)==12:
                           x,y,w,h = int(b[6]),int(b[7]),int(b[8]),int(b[9])
                           cv2.putText(img,b[11],(x,y-5),cv2.FONT_HERSHEY_SIMPLEX,1,(50,50,255),2)
                           cv2.rectangle(img, (x,y), (x+w, y+h), (50, 50, 255), 2)
           
          cv2.imshow('img', img)
          cv2.waitKey(0)

          Detecting ONLY Digits

          import cv2
          import pytesseract
          import numpy as np
          from PIL import ImageGrab
          import time
           
           
          pytesseract.pytesseract.tesseract_cmd = 'E:\pythonProject\Github\Tesseract-OCR\\tesseract.exe'
          img = cv2.imread('1.png')
          img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
           
          ##############################################
          ##### Detecting ONLY Digits  ######
          ##############################################
           hImg, wImg,_ = img.shape
           conf = r'--oem 3 --psm 6 outputbase digits'
           boxes = pytesseract.image_to_boxes(img,config=conf)
           for b in boxes.splitlines():
               print(b)
               b = b.split(' ')
               print(b)
               x, y, w, h = int(b[1]), int(b[2]), int(b[3]), int(b[4])
               cv2.rectangle(img, (x,hImg- y), (w,hImg- h), (50, 50, 255), 2)
               cv2.putText(img,b[0],(x,hImg- y+25),cv2.FONT_HERSHEY_SIMPLEX,1,(50,50,255),2)
           
          cv2.imshow('img', img)
          cv2.waitKey(0)

          3.问题叙述

          首先,我遇到的问题有

          (1)无效的TeserAct版本:“TeserAct3.02”

           可能是此版本太低了,但我找了找新的版本,在此更新一下路径:

          点击此网址  Home · UB-Mannheim/tesseract Wiki · GitHub

          自行选择合适的就可以了。

          (2)识别效果差

          可以看到,将本来不是数字的字母也强行识别出来了,这简直说不过去了。

          最后我们看看更改后的效果:

          cool,非常的棒,快去试试吧!

          对于数字又强差人意了,所以说它这个本身还是存在一点的问题。我觉得影响不大,你觉得不舒服,可以换张图试试。

          4.image_to_data()配置讲解

          oem讲解

          OEM _ TESSERACТ_ ONLY      只以最快的速度运行Tesseract

          OEM _ CUBE _ ONLY        仅运行多维数据集-精度更高,但速度更慢

          OEM _ TESSERACT _ CUBE _ cOMBINED         同时运行并组合结果-最佳精度

          OEM _ DEFAULT     在调用init_*0时指定此模式,以指示应根据特定于语言的配置中的变量自动推断上述任何模式。命令行配置,或者如果没有在上面任何一项中指定,则应设置为默认的OEM_ TESSERACT_ ONLY。

          psm讲解

          PSM _ OSD _ ONLY          仅用于方向和脚本检测。

          PSM _ AUTO _ OSD            带有方向和脚本检测的自动页面分割。(OSD)

          PSM _ AUTO _ ONLY            自动页面分割,但没有OSD或OCR。                              PSM _ AUTO              完全自动页面分割,但没有OSD。

          PSM _ SINGLE _ COLUMN          假设一列大小可变的文本。

          PSM _ SINGLE _ BLOCK _ VERT _ TEXT         假设一个统一的垂直对齐文本块。

          PSM _ SINGLE _ BLOCK          假设一个统一的文本块(默认值)

          PSM _ SINGLE _ LINE          将图像视为单个文本行。

          PSM _ SINGLE _ WORD          将图像视为单个单词。

          PSM _ CIRCLE _ WORD         将图像视为圆圈中的单个单词。

          PSM _ SINGLE _ CHAR         将图像视为单个字符。

          PSM _ SPARSE _ TEXT        在没有特定顺序的情况下尽可能多地查找文本。

          PSM _ SPARSE _ TEXT _ OSD         具有方向和脚本检测的稀疏文本。

          PSM _ RAW _ LINE           将图像视为单个文本行,绕过特定于Tesseract的黑客攻击。

          5.项目拓展

          import cv2
          import pytesseract
          import numpy as np
          from PIL import ImageGrab
          import time
           
          pytesseract.pytesseract.tesseract_cmd = 'E:\pythonProject\Github\Tesseract-OCR\\tesseract.exe'
          img = cv2.imread('1.png')
          img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
          cap = cv2.VideoCapture(0)
          cap.set(3,640)
          cap.set(4,480)
          def captureScreen(bbox=(300,300,1500,1000)):
              capScr = np.array(ImageGrab.grab(bbox))
              capScr = cv2.cvtColor(capScr, cv2.COLOR_RGB2BGR)
              return capScr
          while True:
              timer = cv2.getTickCount()
              _,img = cap.read()
              #img = captureScreen()
              #DETECTING CHARACTERES
              hImg, wImg,_ = img.shape
              boxes = pytesseract.image_to_boxes(img)
              for b in boxes.splitlines():
                  #print(b)
                  b = b.split(' ')
                  #print(b)
                  x, y, w, h = int(b[1]), int(b[2]), int(b[3]), int(b[4])
                  cv2.rectangle(img, (x,hImg- y), (w,hImg- h), (50, 50, 255), 2)
                  cv2.putText(img,b[0],(x,hImg- y+25),cv2.FONT_HERSHEY_SIMPLEX,1,(50,50,255),2)
              fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer);
              #cv2.putText(img, str(int(fps)), (75, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (20,230,20), 2);
              cv2.imshow("Result",img)
              cv2.waitKey(1)
           
           
          cv2.imshow('img', img)
          cv2.waitKey(0)

          进行网络摄像头的实时文字测试。

          6.总结与评价

          我是首次使用Tesseract,体验感很不好,这是我在b站的评论中看到的:

          说实话,我还没有学到用算法的地步,学学了解一下就好了,反正我是准备项目实战的中后期去学习深度学习,以及其他的算法学习,这方面我不好说,但它的精度的确是不达标,你们也看到了,居然把文字也识别成了数字。而且开启摄像头识别的也不是很好,识别不完全or识别错误。

          以上就是Python Opencv实战之文字检测OCR的详细内容,更多关于Python Opencv文字检测的资料请关注自由互联其它相关文章!

          上一篇:python使用pika库调用rabbitmq参数使用详情
          下一篇:没有了
          网友评论