前言
记得开始学习Java的时候,一遇到多线程情况就使用synchronized,相对于当时的我们来说synchronized是这么的神奇而又强大,那个时候我们赋予它一个名字“同步”,也成为了我们解决多线程情况的百试不爽的良药。但是,随着学习的进行我们知道在JDK1.5之前synchronized是一个重量级锁,相对于j.u.c.Lock,它会显得那么笨重,以至于我们认为它不是那么的高效而慢慢摒弃它。
不过,随着Javs SE 1.6对synchronized进行的各种优化后,synchronized并不会显得那么重了。下面来一起探索synchronized的基本使用、实现机制、Java是如何对它进行了优化、锁优化机制、锁的存储结构等升级过程。
一、synchronized作用
Synchronized是Java中解决并发问题的一种最常用的方法,也是最简单的一种方法。Synchronized的作用主要有三个:
-
原子性:确保线程互斥的访问同步代码。
-
可见性:保证共享变量的修改能够及时可见,其实是通过Java内存模型中的 “对一个变量unlock操作之前,必须要同步到主内存中;如果对一个变量进行lock操作,则将会清空工作内存中此变量的值,在执行引擎使用此变量前,需要重新从主内存中load操作或assign操作初始化变量值” 来保证的。
-
有序性:有效解决重排序问题,即 “一个unlock操作先行发生(happen-before)于后面对同一个锁的lock操作”。
从语法上讲,Synchronized可以把任何一个非null对象作为"锁",在HotSpot JVM实现中,锁有个专门的名字:对象监视器(Object Monitor)。
synchronized的三种应用方式
- 1、修饰实例方法:当synchronized作用在实例方法时,监视器锁(monitor)便是对象实例(this)。
- 2、修饰静态方法:当synchronized作用在静态方法时,监视器锁(monitor)便是对象的Class实例,Java8Class实例存储在堆中,因此静态方法锁相当于该类的一个全局锁。
- 3、修饰代码块:当synchronized作用在某一个对象实例时,监视器锁(monitor)便是括号括起来的对象实例。
Synchronized是Java中解决并发问题的一种最常用的方法,也是最简单的一种方法。
Synchronized的作用主要有三个:
- 1、确保线程互斥的访问同步代码。
- 2、保证共享变量的修改能够及时可见。
- 3、有效解决重排序问题。
注意
synchronized 内置锁 是一种 对象锁(锁的是对象而非引用变量),作用粒度是对象 ,可以用来实现对 临界资源的同步互斥访问 ,是 可重入 的。其可重入最大的作用是避免死锁,如:子类同步方法调用了父类同步方法,如没有可重入的特性,则会发生死锁;
Java中每一个对象都可以作为锁,这是synchronized实现同步的基础。
二、同步原理
数据同步需要依赖锁,那锁的同步又依赖谁?synchronized给出的答案是在软件层面依赖JVM,而j.u.c.Lock给出的答案是在硬件层面依赖特殊的CPU指令。
当一个线程访问同步代码块时,首先是需要得到锁才能执行同步代码,当退出或者抛出异常时必须要释放锁,那么它是如何来实现这个机制的呢?我们先看一段简单的代码:
static final Object lock = new Object(); static int counter = 0; public static void main(String[] args) { synchronized (lock) { counter++; } }对应的字节码为
public static void main(java.lang.String[]); descriptor: ([Ljava/lang/String;)V flags: ACC_PUBLIC, ACC_STATIC Code: stack=2, locals=3, args_size=1 0: getstatic #2 // <- lock引用 (synchronized开始) 3: dup 4: astore_1 // lock引用 -> slot 1 5: monitorenter // 将 lock对象 MarkWord 置为 Monitor 指针 6: getstatic #3 // <- i 9: iconst_1 // 准备常数 1 10: iadd // +1 11: putstatic #3 // -> i 14: aload_1 // <- lock引用 15: monitorexit // 将 lock对象 MarkWord 重置, 唤醒 EntryList 16: goto 24 19: astore_2 // e -> slot 2 20: aload_1 // <- lock引用 21: monitorexit // 将 lock对象 MarkWord 重置, 唤醒 EntryList 22: aload_2 // <- slot 2 (e) 23: athrow // throw e 24: return Exception table: from to target type 6 16 19 any 19 22 19 any LineNumberTable: line 8: 0 line 9: 6 line 10: 14 line 11: 24 LocalVariableTable: Start Length Slot Name Signature 0 25 0 args [Ljava/lang/String; StackMapTable: number_of_entries = 2 frame_type = 255 /* full_frame */ offset_delta = 19 locals = [ class "[Ljava/lang/String;", class java/lang/Object ] stack = [ class java/lang/Throwable ] frame_type = 250 /* chop */ offset_delta = 4反编译结果:
-
monitorenter:每个对象都是一个监视器锁(monitor)。当monitor被占用时就会处于锁定状态,线程执行monitorenter指令时尝试获取monitor的所有权,过程如下:
- 1、如果monitor的进入数为0,则该线程进入monitor,然后将进入数设置为1,该线程即为monitor的所有者;
- 2、如果线程已经占有该monitor,只是重新进入,则进入monitor的进入数加1;
- 3、如果其他线程已经占用了monitor,则该线程进入阻塞状态,直到monitor的进入数为0,再重新尝试获取monitor的所有权;
-
monitorexit:执行monitorexit的线程必须是objectref所对应的monitor的所有者。指令执行时,monitor的进入数减1,如果减1后进入数为0,那线程退出monitor,不再是这个monitor的所有者。其他被这个monitor阻塞的线程可以尝试去获取这个 monitor 的所有权。
- monitorexit指令出现了两次,第1次为同步正常退出释放锁;第2次为发生异常退出释放锁;
通过上面两段描述,我们应该能很清楚的看出Synchronized的实现原理,Synchronized的语义底层是通过一个monitor的对象来完成,其实wait/notify等方法也依赖于monitor对象,这就是为什么只有在同步的块或者方法中才能调用wait/notify等方法,否则会抛出java.lang.IllegalMonitorStateException的异常的原因。
再来看一下同步方法:
public class SynchronizedMethod { public synchronized void method() { System.out.println("Hello World!"); } }查看反编译后结果:
反编译结果: 从编译的结果来看,方法的同步并没有通过指令 monitorenter 和 monitorexit 来完成(理论上其实也可以通过这两条指令来实现),不过相对于普通方法,其常量池中多了 ACC_SYNCHRONIZED 标示符。JVM就是根据该标示符来实现方法的同步的:
当方法调用时,调用指令将会检查方法的 ACC_SYNCHRONIZED 访问标志是否被设置,如果设置了,执行线程将先获取monitor,获取成功之后才能执行方法体,方法执行完后再释放monitor。在方法执行期间,其他任何线程都无法再获得同一个monitor对象。
两种同步方式本质上没有区别,只是方法的同步是一种隐式的方式来实现,无需通过字节码来完成。两个指令的执行是JVM通过调用操作系统的互斥原语mutex来实现,被阻塞的线程会被挂起、等待重新调度,会导致“用户态和内核态”两个态之间来回切换,对性能有较大影响。
三、synchronize底层原理
Java 虚拟机中的同步(synchronization)基于进入和退出Monitor对象实现, 无论是显式同步(有明确的 monitorenter 和 monitorexit 指令,即同步代码块),还是隐式同步都是如此。
在 Java 语言中,同步用的最多的地方可能是被 synchronized 修饰的同步方法。同步方法并不是由 monitorenter 和 monitorexit 指令来实现同步的,而是由方法调用指令读取运行时常量池中方法表结构的 ACC_SYNCHRONIZED 标志来隐式实现的。
同步代码块:monitorenter指令插入到同步代码块的开始位置,monitorexit指令插入到同步代码块的结束位置,JVM需要保证每一个monitorenter都有一个monitorexit与之相对应。任何对象都有一个monitor与之相关联,当且一个monitor被持有之后,他将处于锁定状态。线程执行到monitorenter指令时,将会尝试获取对象所对应的monitor所有权,即尝试获取对象的锁;
3.1 Java对象头
在JVM中,对象在内存中的布局分为三块区域:对象头、实例变量和填充数据。如下:
-
实例变量:存放类的属性数据信息,包括父类的属性信息,如果是数组的实例部分还包括数组的长度,这部分内存按4字节对齐。
-
填充数据:由于虚拟机要求对象起始地址必须是8字节的整数倍。填充数据不是必须存在的,仅仅是为了字节对齐,这点了解即可。
-
对象头:Hotspot虚拟机的对象头主要包括两部分数据:Mark Word(标记字段)、Klass Pointer(类型指针)。其中Klass Point是是对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例,Mark Word用于存储对象自身的运行时数据,它是实现轻量级锁和偏向锁的关键。
Java对象头的长度
- Mark Word:用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程 ID、偏向时间戳等等。Java对象头一般占有两个机器码(在32位虚拟机中,1个机器码等于4字节,也就是32bit),但是如果对象是数组类型,则需要三个机器码,因为JVM虚拟机可以通过Java对象的元数据信息确定Java对象的大小,但是无法从数组的元数据来确认数组的大小,所以用一块来记录数组长度。
Mark Word 结构
初始是无锁状态,其中Mark Word在默认情况下存储着对象的HashCode、分代年龄、锁标记位等以下是32位JVM的Mark Word默认存储结构。
在运行期间MarkWord里存储的数据会随着锁状态的变化而变化。
3.2 对象头中Mark Word与线程中Lock Record
在线程进入同步代码块的时候,如果此同步对象没有被锁定,即它的锁标志位是01,则虚拟机首先在当前线程的栈中创建我们称之为“锁记录(Lock Record)”的空间,用于存储锁对象的Mark Word的拷贝,官方把这个拷贝称为Displaced Mark Word。整个Mark Word及其拷贝至关重要。
Lock Record是线程私有的数据结构,每一个线程都有一个可用Lock Record列表,同时还有一个全局的可用列表。每一个被锁住的对象Mark Word都会和一个Lock Record关联(对象头的MarkWord中的Lock Word指向Lock Record的起始地址),同时Lock Record中有一个Owner字段存放拥有该锁的线程的唯一标识(或者object mark word),表示该锁被这个线程占用。如下图所示为Lock Record的内部结构:
Lock Record描述
-
Owner:初始时为NULL表示当前没有任何线程拥有该monitor record,当线程成功拥有该锁后保存线程唯一标识,当锁被释放时又设置为NULL。
-
EntryQ:关联一个系统互斥锁(semaphore),阻塞所有试图锁住monitor record失败的线程。
-
RcThis:表示blocked或waiting在该monitor record上的所有线程的个数。
-
Nest:用来实现 重入锁的计数。
-
HashCode:保存从对象头拷贝过来的HashCode值(可能还包含GC age)。
-
Candidate:用来避免不必要的阻塞或等待线程唤醒,因为每一次只有一个线程能够成功拥有锁,如果每次前一个释放锁的线程唤醒所有正在阻塞或等待的线程,会引起不必要的上下文切换(从阻塞到就绪然后因为竞争锁失败又被阻塞)从而导致性能严重下降。Candidate只有两种可能的值:0:表示没有需要唤醒的线程,1:表示要唤醒一个继任线程来竞争锁。
3.3 监视器(Monitor)
任何一个对象都有一个Monitor与之关联,当且一个Monitor被持有后,它将处于锁定状态。Synchronized在JVM里的实现都是 基于进入和退出Monitor对象来实现方法同步和代码块同步,虽然具体实现细节不一样,但是都可以通过成对的MonitorEnter和MonitorExit指令来实现。
Monior:被翻译为监视器或管程,我们可以把它理解为一个同步工具,也可以描述为一种同步机制,它通常被描述为一个对象。与一切皆对象一样,所有的Java对象是天生的Monitor,每一个Java对象都有成为Monitor的潜质,因为在Java的设计中 ,每一个Java对象自打娘胎里出来就带了一把看不见的锁,它叫做内部锁或者Monitor锁。Monitor 是线程私有的数据结构,每一个线程都有一个可用monitor record列表,同时还有一个全局的可用列表。每一个被锁住的对象都会和一个monitor关联(对象头的MarkWord中的LockWord指向monitor的起始地址),同时monitor中有一个Owner字段存放拥有该锁的线程的唯一标识,表示该锁被这个线程占用。其结构如下:
如果使用 synchronized 给对象上锁(重量级)之后,该对象头的 Mark Word 中就被设置指向 Monitor 对象的指针,Monitor 结构如下:
synchronized关键字用来修饰的位置不同,其实现原理也是不同的。锁住的对象也是不同的。在Java中,每个对象里面隐式的存在一个叫monitor(对象监视器)的对象,这个对象源码是采用C++实现的。
通常说Synchronized的对象锁,MarkWord锁标识位为10,其中指针指向的是Monitor对象的起始地址。在Java虚拟机(HotSpot)中,Monitor是由ObjectMonitor实现的,其主要数据结构如下(位于HotSpot虚拟机源码ObjectMonitor.hpp文件,C++实现的):
ObjectMonitor() { _header = NULL; //是一个markOop类型,markOop就是对象头中的Mark Word _count = 0; //抢占该锁的线程数 约等于 WaitSet.size + EntryList.size _waiters = 0, //等待线程数 _recursions = 0; //锁重入次数 _object = NULL; //监视器锁寄生的对象。锁不是平白出现的,而是寄托存储于对象中 _owner = NULL; //指向获得ObjectMonitor对象的线程或基础锁 _WaitSet = NULL; //处于wait状态的线程,会被加入到_WaitSet _WaitSetLock = 0 ; //保护WaitSet的一个自旋锁(monitor大锁里面的一个小锁,这个小锁用来保护_WaitSet更改) _Responsible = NULL ; _succ = NULL ; //当锁被前一个线程释放,会指定一个假定继承者线程,但是它不一定最终获得锁。 _cxq = NULL ; //ContentionList FreeNext = NULL ; _EntryList = NULL ; //处于等待锁block状态的线程,即未获取锁被阻塞或者被wait的线程重新进入被放入entryList中 _SpinFreq = 0 ; _SpinClock = 0 ; OwnerIsThread = 0 ; //当前owner是thread还是BasicLock _previous_owner_tid = 0;//当前owner的线程id }下面解释objectMonitor中属性的含义
属性 含义 _header 定义:volatile markOop _header; <br>说明:_header是一个markOop类型,markOop就是对象头中的Mark Word _count 定义:volatile intptr_t _count;<br>说明:抢占该锁的线程数 约等于 WaitSet.size + EntryList.size _waiters 定义:volatile intptr_t _waiters; <br>说明:等待线程数 _recursions 定义:volatile intptr_t _recursions; <br>说明:锁重入次数 _object 定义:void* volatile _object; <br>说明:监视器锁寄生的对象。锁不是平白出现的,而是寄托存储于对象中 _owner 定义:void * volatile _owner; <br>说明:指向获得ObjectMonitor对象的线程或基础锁 _WaitSet 定义:ObjectWaiter * volatile _WaitSet; <br>说明:处于wait状态的线程,被加入到这个linkedList _WaitSetLock 定义:volatile int _WaitSetLock; <br>说明:protects Wait Queue - simple spinlock ,保护WaitSet的一个自旋锁(monitor大锁里面的一个小锁,这个小锁用来保护_WaitSet更改) _Responsible 定义:Thread * volatile _Responsible<br>说明:未知 <br>参考:https://www.jianshu.com/p/09de11d71ef8 _succ 定义:Thread * volatile _succ ;<br>说明:当锁被前一个线程释放,会指定一个假定继承者线程,但是它不一定最终获得锁。<br>参考:https://www.jianshu.com/p/09de11d71ef8 _cxq 定义:ObjectWaiter * volatile _cxq ; <br>说明:ContentionList <br>参考:https://www.jianshu.com/p/09de11d71ef8 FreeNext 定义:ObjectMonitor * FreeNext ; <br>说明:未知 _EntryList 定义:ObjectWaiter * volatile _EntryList ; <br>说明:未获取锁被阻塞或者被wait的线程重新进入被放入entryList中 _SpinFreq 定义:volatile int _SpinFreq ; <br>说明:未知 可能是获取锁的成功率 _SpinClock 定义:volatile int _SpinClock ;<br>说明:未知 OwnerIsThread 定义:int OwnerIsThread ; <br>说明:当前owner是thread还是BasicLock _previous_owner_tid 定义:volatile jlong _previous_owner_tid; <br>说明:当前owner的线程idObjectMonitor中有两个队列,_WaitSet 和 _EntryList,用来保存ObjectWaiter对象列表( 每个等待锁的线程都会被封装成ObjectWaiter对象 ),_owner指向持有ObjectMonitor对象的线程,当多个线程同时访问一段同步代码时: * 1、首先会进入 _EntryList 集合,当线程获取到对象的monitor后,进入 _Owner区域并把monitor中的owner变量设置为当前线程,同时monitor中的计数器count加1。 * 2、若线程调用 wait() 方法,将释放当前持有的monitor,owner变量恢复为null,count自减1,同时该线程进入 WaitSet集合中等待被唤醒。 * 3、若当前线程执行完毕,也将释放monitor(锁)并复位count的值,以便其他线程进入获取monitor(锁)。
同时,Monitor对象存在于每个Java对象的对象头Mark Word中(存储的指针的指向),Synchronized锁便是通过这种方式获取锁的,也是为什么Java中任意对象可以作为锁的原因,同时notify/notifyAll/wait等方法会使用到Monitor锁对象,所以必须在同步代码块中使用。
监视器Monitor有两种同步方式:互斥与协作。多线程环境下线程之间如果需要共享数据,需要解决互斥访问数据的问题,监视器可以确保监视器上的数据在同一时刻只会有一个线程在访问。
什么时候需要协作? 比如:
一个线程向缓冲区写数据,另一个线程从缓冲区读数据,如果读线程发现缓冲区为空就会等待,当写线程向缓冲区写入数据,就会唤醒读线程,这里读线程和写线程就是一个合作关系。JVM通过Object类的wait方法来使自己等待,在调用wait方法后,该线程会释放它持有的监视器,直到其他线程通知它才有执行的机会。一个线程调用notify方法通知在等待的线程,这个等待的线程并不会马上执行,而是要通知线程释放监视器后,它重新获取监视器才有执行的机会。如果刚好唤醒的这个线程需要的监视器被其他线程抢占,那么这个线程会继续等待。Object类中的notifyAll方法可以解决这个问题,它可以唤醒所有等待的线程,总有一个线程执行。
对象关联的 ObjectMonitor 对象有一个线程内部竞争锁的机制,如下图所示:
四、锁的优化
从JDK5引入了现代操作系统新增加的CAS原子操作( JDK5中并没有对synchronized关键字做优化,而是体现在J.U.C中,所以在该版本concurrent包有更好的性能 ),从JDK6开始,就对synchronized的实现机制进行了较大调整,包括使用JDK5引进的CAS自旋之外,还增加了自适应的CAS自旋、锁消除、锁粗化、偏向锁、轻量级锁这些优化策略。由于此关键字的优化使得性能极大提高,同时语义清晰、操作简单、无需手动关闭,所以推荐在允许的情况下尽量使用此关键字,同时在性能上此关键字还有优化的空间。
锁主要存在四种状态,依次是:无锁状态、偏向锁状态、轻量级锁状态、重量级锁状态,锁可以从偏向锁升级到轻量级锁,再升级的重量级锁。但是锁的升级是单向的,也就是说只能从低到高升级,不会出现锁的降级。
在 JDK 1.6 中默认是开启偏向锁和轻量级锁的,可以通过-XX:-UseBiasedLocking来禁用偏向锁。
4.1 偏向锁
偏向锁是Java 6之后加入的新锁,它是一种针对加锁操作的优化手段,经过研究发现,在大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得,因此为了减少同一线程获取锁(会涉及到一些CAS操作,耗时)的代价而引入偏向锁。
偏向锁的核心思想是,如果一个线程获得了锁,那么锁就进入偏向模式,此时Mark Word 的结构也变为偏向锁结构,当这个线程再次请求锁时,无需再做任何同步操作,即获取锁的过程,这样就省去了大量有关锁申请的操作,从而也就提供程序的性能。所以,对于没有锁竞争的场合,偏向锁有很好的优化效果,毕竟极有可能连续多次是同一个线程申请相同的锁。但是对于锁竞争比较激烈的场合,偏向锁就失效了,因为这样场合极有可能每次申请锁的线程都是不相同的,因此这种场合下不应该使用偏向锁,否则会得不偿失,需要注意的是,偏向锁失败后,并不会立即膨胀为重量级锁,而是先升级为轻量级锁。
偏向锁
作用:减少同一线程获取锁的代价 引入偏向锁是因为大多数情况下,锁并不存在多线程竞争,总是由同一线程多次获得。
获取锁
- 1、检测Mark Word是否为可偏向状态,即是否为偏向锁1,锁标识位为01。
- 2、若为可偏向状态,则测试线程ID是否为当前线程ID,如果是,则执行步骤(5),否则执行步骤(3)。
- 3、如果线程ID不为当前线程ID,则通过CAS操作竞争锁,竞争成功,则将Mark Word的线程ID替换为当前线程ID,否则执行线程(4)。
- 4、通过CAS竞争锁失败,证明当前存在多线程竞争情况,当到达全局安全点,获得偏向锁的线程被挂起,偏向锁升级为轻量级锁,然后被阻塞在安全点的线程继续往下执行同步代码块。
- 5、执行同步代码块。
释放锁
偏向锁的释放采用了一种只有竞争才会释放锁的机制,线程是不会主动去释放偏向锁,需要等待其他线程来竞争。偏向锁的撤销需要等待全局安全点(这个时间点是上没有正在执行的代码)。其步骤如下:
- 1、暂停拥有偏向锁的线程,判断锁对象是否还处于被锁定状态;
- 2、撤销偏向锁,恢复到无锁状态(01)或者轻量级锁的状态;
注意:
轻量级锁在没有竞争时(就自己这个线程),每次重入仍然需要执行 CAS 操作。 Java 6 中引入了偏向锁来做进一步优化:只有第一次使用 CAS 将线程 ID 设置到对象的 Mark Word 头,之后发现这个线程 ID 是自己的就表示没有竞争,不用重新 CAS。以后只要不发生竞争,这个对象就归该线程所有。
static final Object obj = new Object(); public static void m1() { synchronized( obj ) { // 同步块 A m2(); } } public static void m2() { synchronized( obj ) { // 同步块 B m3(); } } public static void m3() { synchronized( obj ) { // 同步块 C } }偏向状态
一个对象创建时:
- 如果开启了偏向锁(默认开启),那么对象创建后,markword 值为 0x05 即最后 3 位为 101,这时它的thread、epoch、age 都为 0。
- 偏向锁是默认是延迟的,不会在程序启动时立即生效,如果想避免延迟,可以加 VM 参数 -XX:BiasedLockingStartupDelay=0 来禁用延迟。
- 如果没有开启偏向锁,那么对象创建后,markword 值为 0x01 即最后 3 位为 001,这时它的 hashcode、age 都为 0,第一次用到 hashcode 时才会赋值。
测试延迟特性
- 1、测试偏向锁 利用 jol 第三方工具来查看对象头信息
输出
11:08:58.117 c.TestBiased [t1] - synchronized 前 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101 11:08:58.121 c.TestBiased [t1] - synchronized 中 00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101 11:08:58.121 c.TestBiased [t1] - synchronized 后 00000000 00000000 00000000 00000000 00011111 11101011 11010000 00000101注意:处于偏向锁的对象解锁后,线程 id 仍存储于对象头中。
- 2、测试禁用 在上面测试代码运行时在添加 VM 参数 -XX:-UseBiasedLocking 禁用偏向锁 输出:
- 3、测试 hashCode 正常状态对象一开始是没有 hashCode 的,第一次调用才生成
撤销 - 调用对象 hashCode
调用了对象的 hashCode,但偏向锁的对象 MarkWord 中存储的是线程 id,如果调用 hashCode 会导致偏向锁被撤销。
- 轻量级锁会在锁记录中记录 hashCode
- 重量级锁会在 Monitor 中记录 hashCode
在调用 hashCode 后使用偏向锁,记得去掉 -XX:-UseBiasedLocking 输出:
11:22:10.386 c.TestBiased [main] - 调用 hashCode:1778535015 11:22:10.391 c.TestBiased [t1] - synchronized 前 00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001 11:22:10.393 c.TestBiased [t1] - synchronized 中 00000000 00000000 00000000 00000000 00100000 11000011 11110011 01101000 11:22:10.393 c.TestBiased [t1] - synchronized 后 00000000 00000000 00000000 01101010 00000010 01001010 01100111 00000001撤销 - 其它线程使用对象
当有其它线程使用偏向锁对象时,会将偏向锁升级为轻量级锁
private static void test2() throws InterruptedException { Dog d = new Dog(); Thread t1 = new Thread(() -> { synchronized (d) { log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true)); } synchronized (TestBiased.class) { TestBiased.class.notify(); } // 如果不用 wait/notify 使用 join 必须打开下面的注释 // 因为:t1 线程不能结束,否则底层线程可能被 jvm 重用作为 t2 线程,底层线程 id 是一样的 /*try { System.in.read(); } catch (IOException e) { e.printStackTrace(); }*/ }, "t1"); t1.start(); Thread t2 = new Thread(() -> { synchronized (TestBiased.class) { try { TestBiased.class.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true)); synchronized (d) { log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true)); } log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true)); }, "t2"); t2.start(); }输出:
[t1] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101 [t2] - 00000000 00000000 00000000 00000000 00011111 01000001 00010000 00000101 [t2] - 00000000 00000000 00000000 00000000 00011111 10110101 11110000 01000000 [t2] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001撤销 - 调用 wait/notify
public static void main(String[] args) throws InterruptedException { Dog d = new Dog(); Thread t1 = new Thread(() -> { log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true)); synchronized (d) { log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true)); try { d.wait(); } catch (InterruptedException e) { e.printStackTrace(); } log.debug(ClassLayout.parseInstance(d).toPrintableSimple(true)); } }, "t1"); t1.start(); new Thread(() -> { try { Thread.sleep(6000); } catch (InterruptedException e) { e.printStackTrace(); } synchronized (d) { log.debug("notify"); d.notify(); } }, "t2").start(); }输出:
[t1] - 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000101 [t1] - 00000000 00000000 00000000 00000000 00011111 10110011 11111000 00000101 [t2] - notify [t1] - 00000000 00000000 00000000 00000000 00011100 11010100 00001101 11001010批量重偏向
如果对象虽然被多个线程访问,但没有竞争,这时偏向了线程 T1 的对象仍有机会重新偏向 T2,重偏向会重置对象的 Thread ID。
当撤销偏向锁阈值超过 20 次后,jvm 会这样觉得,我是不是偏向错了呢,于是会在给这些对象加锁时重新偏向至加锁线程。
private static void test3() throws InterruptedException { Vector<Dog> list = new Vector<>(); Thread t1 = new Thread(() -> { for (int i = 0; i < 30; i++) { Dog d = new Dog(); list.add(d); synchronized (d) { log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true)); } } synchronized (list) { list.notify(); } }, "t1"); t1.start(); Thread t2 = new Thread(() -> { synchronized (list) { try { list.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } log.debug("===============> "); for (int i = 0; i < 30; i++) { Dog d = list.get(i); log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true)); synchronized (d) { log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true)); } log.debug(i + "\t" + ClassLayout.parseInstance(d).toPrintableSimple(true)); } }, "t2"); t2.start(); }输出:
[t1] - 0 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t1] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - ===============> [t2] - 0 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 0 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 1 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 1 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 2 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 2 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 2 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 3 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 3 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 3 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 4 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 4 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 4 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 5 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 5 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 5 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 6 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 6 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 6 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 7 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 7 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 8 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 8 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 9 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 9 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 9 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 10 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 10 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 10 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 11 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 11 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 11 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 12 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 12 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 12 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 13 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 13 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 13 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 14 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 14 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 14 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 15 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 15 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 16 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 16 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 16 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 17 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 17 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 17 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 18 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 18 00000000 00000000 00000000 00000000 00100000 01011000 11110111 00000000 [t2] - 18 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 [t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 19 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 20 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 21 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 22 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 23 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 24 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 25 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 26 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 27 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 28 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11100000 00000101 [t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 00000101 [t2] - 29 00000000 00000000 00000000 00000000 00011111 11110011 11110001 000001014.2 轻量级锁
倘若偏向锁失败,虚拟机并不会立即升级为重量级锁,它还会尝试使用一种称为轻量级锁的优化手段(1.6之后加入的),此时Mark Word 的结构也变为轻量级锁的结构。轻量级锁能够提升程序性能的依据是“对绝大部分的锁,在整个同步周期内都不存在竞争”,注意这是经验数据。需要了解的是,轻量级锁所适应的场景是线程交替执行同步块的场合,如果存在同一时间访问同一锁的场合,就会导致轻量级锁膨胀为重量级锁。
获取锁:
- 1、判断当前对象是否处于无锁状态(hashcode、0、01),若是,则JVM首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝(官方把这份拷贝加了一个Displaced前缀,即Displaced Mark Word);否则执行步骤(3);
- 2、JVM利用CAS操作尝试将对象的Mark Word更新为指向Lock Record的指针,如果成功表示竞争到锁,则将锁标志位变成00(表示此对象处于轻量级锁状态),执行同步操作;如果失败则执行步骤(3);
- 3、判断当前对象的Mark Word是否指向当前线程的栈帧,如果是则表示当前线程已经持有当前对象的锁,则直接执行同步代码块;否则只能说明该锁对象已经被其他线程抢占了,这时轻量级锁需要膨胀为重量级锁,锁标志位变成10,后面等待的线程将会进入阻塞状态;
释放锁:
轻量级锁的释放也是通过CAS操作来进行的,主要步骤如下:
- 1、取出在获取轻量级锁保存在Displaced Mark Word中的数据;
- 2、用CAS操作将取出的数据替换当前对象的Mark Word中,如果成功,则说明释放锁成功,否则执行(3);
- 3、如果CAS操作替换失败,说明有其他线程尝试获取该锁,则需要在释放锁的同时需要唤醒被挂起的线程。
对于轻量级锁,其性能提升的依据是“对于绝大部分的锁,在整个生命周期内都是不会存在竞争的”,如果打破这个依据则除了互斥的开销外,还有额外的CAS操作,因此在有多线程竞争的情况下,轻量级锁比重量级锁更慢;
轻量级锁的使用场景
- 1、如果一个对象虽然有多线程要加锁,但加锁的时间是错开的(也就是没有竞争),那么可以使用轻量级锁来优化。
- 2、轻量级锁对使用者是透明的,即语法仍然是 synchronized。
假设有两个方法同步块,利用同一个对象加锁
static final Object obj = new Object(); public static void method1() { synchronized( obj ) { // 同步块 A method2(); } } public static void method2() { synchronized( obj ) { // 同步块 B } }-
1、创建锁记录(Lock Record)对象,每个线程的栈帧都会包含一个锁记录的结构,内部可以存储锁定对象的Mark Word。
-
2、让锁记录中 Object reference 指向锁对象,并尝试用 cas 替换 Object 的 Mark Word,将 Mark Word 的值存入锁记录。
-
3、如果 cas 替换成功,对象头中存储了 锁记录地址和状态 00 ,表示由该线程给对象加锁,这时图示如下
-
4、如果 cas 失败,有两种情况:
- 如果是其它线程已经持有了该 Object 的轻量级锁,这时表明有竞争,进入锁膨胀过程。
- 如果是自己执行了 synchronized 锁重入,那么再添加一条 Lock Record 作为重入的计数。
-
5、当退出 synchronized 代码块(解锁时)如果有取值为 null 的锁记录,表示有重入,这时重置锁记录,表示重入计数减一。
-
6、当退出 synchronized 代码块(解锁时)锁记录的值不为 null,这时使用 cas 将 Mark Word 的值恢复给对象头。
- 成功,则解锁成功。
- 失败,说明轻量级锁进行了锁膨胀或已经升级为重量级锁,进入重量级锁解锁流程。
4.3 锁膨胀
如果在尝试加轻量级锁的过程中,CAS 操作无法成功,这时一种情况就是有其它线程为此对象加上了轻量级锁(有竞争),这时需要进行锁膨胀,将轻量级锁变为重量级锁。
static Object obj = new Object(); public static void method1() { synchronized( obj ) { // 同步块 } }-
1、当 Thread-1 进行轻量级加锁时,Thread-0 已经对该对象加了轻量级锁
-
2、这时 Thread-1 加轻量级锁失败,进入锁膨胀流程
- 即为 Object 对象申请 Monitor 锁,让 Object 指向重量级锁地址。
- 然后自己进入 Monitor 的 EntryList BLOCKED。
- 3、当 Thread-0 退出同步块解锁时,使用 cas 将 Mark Word 的值恢复给对象头,失败。这时会进入重量级解锁流程,即按照 Monitor 地址找到 Monitor 对象,设置 Owner 为 null,唤醒 EntryList 中 BLOCKED 线程。
4.4 自旋优化
重量级锁竞争的时候,还可以使用自旋来进行优化,如果当前线程自旋成功(即这时候持锁线程已经退出了同步块,释放了锁),这时当前线程就可以避免阻塞。
引入自旋锁的原因:互斥同步对性能最大的影响是阻塞的实现,因为挂起线程和恢复线程的操作都需要转入内核态中完成,这些操作给系统的并发性能带来很大的压力。同时虚拟机的开发团队也注意到在许多应用上面,共享数据的锁定状态只会持续很短一段时间,为了这一段很短的时间频繁地阻塞和唤醒线程是非常不值得的。
自旋锁:让该线程执行一段无意义的忙循环(自旋)等待一段时间,不会被立即挂起(自旋不放弃处理器的执行时间),看持有锁的线程是否会很快释放锁。自旋锁在JDK 1.4.2中引入,默认关闭,但是可以使用-XX:+UseSpinning开开启;在JDK1.6中默认开启。
自旋锁的缺点:自旋等待不能替代阻塞,虽然它可以避免线程切换带来的开销,但是它占用了处理器的时间。如果持有锁的线程很快就释放了锁,那么自旋的效率就非常好;反之,自旋的线程就会白白消耗掉处理器的资源,它不会做任何有意义的工作,这样反而会带来性能上的浪费。所以说,自旋等待的时间(自旋的次数)必须要有一个限度,例如让其循环10次,如果自旋超过了定义的时间仍然没有获取到锁,则应该被挂起(进入阻塞状态)。通过参数-XX:PreBlockSpin可以调整自旋次数,默认的自旋次数为10。
自适应的自旋锁:JDK1.6引入自适应的自旋锁,自适应就意味着自旋的次数不再是固定的,它是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定:如果在同一个锁的对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也很有可能再次成功,进而它将允许自旋等待持续相对更长的时间。如果对于某个锁,自旋很少成功获得过,那在以后要获取这个锁时将可能省略掉自旋过程,以避免浪费处理器资源。简单来说,就是线程如果自旋成功了,则下次自旋的次数会更多,如果自旋失败了,则自旋的次数就会减少。
自旋锁使用场景:从轻量级锁获取的流程中我们知道,当线程在获取轻量级锁的过程中执行CAS操作失败时,是要通过自旋来获取重量级锁的。(见前面“轻量级锁”)
自旋重试成功的情况
自旋重试失败的情况
注意:
- 1、自旋会占用 CPU 时间,单核 CPU 自旋就是浪费,多核 CPU 自旋才能发挥优势。
- 2、在 Java 6 之后自旋锁是自适应的,比如对象刚刚的一次自旋操作成功过,那么认为这次自旋成功的可能性会高,就多自旋几次;反之,就少自旋甚至不自旋,总之,比较智能。
- 3、Java 7 之后不能控制是否开启自旋功能。
4.5 重量级锁
重量级锁通过对象内部的监视器(monitor)实现,其中monitor的本质是依赖于底层操作系统的Mutex Lock实现,操作系统实现线程之间的切换需要从用户态到内核态的切换,切换成本非常高。
当锁升级为轻量级锁之后,如果依然有新线程过来竞争锁,首先新线程会自旋尝试获取锁,尝试到一定次数(默认10次)。
对象关联的 ObjectMonitor 对象有一个线程内部竞争锁的机制,如下图所示:
synchronized线程内部竞争锁结构:
-
Contention List:竞争队列,所有请求锁的线程首先被放在这个竞争队列中;
-
Entry List:Contention List中那些有资格成为候选资源的线程被移动到Entry List中;
-
Wait Set:哪些调用wait方法被阻塞的线程被放置在这里;
-
OnDeck:任意时刻,最多只有一个线程正在竞争锁资源,该线程被成为OnDeck;
-
Owner:当前已经获取到锁资源的线程被称为Owner;
大量并发线程会在Contention List中,然后将有资格成为候选的放到Entry List中。调用了wait的线程放到Wait Set中,当被唤醒后会放到Entry List中。
指定Entry List中的某个线程为OnDeck线程(一般是最先进去的那个线程),然后OnDeck线程去竞争锁,但是此时其他未进入Contention List的线程会先自旋一下看是否能获得到锁,所以说synchronied不是公平的。
JVM 每次从Waiting Queue 的尾部取出一个线程放到OnDeck作为候选者,但是如果并发比较高,Waiting Queue会被大量线程执行CAS操作,为了降低对尾部元素的竞争,将Waiting Queue 拆分成ContentionList 和 EntryList 二个队列, JVM将一部分线程移到EntryList 作为准备进OnDeck的预备线程。另外说明几点:
-
1、所有请求锁的线程首先被放在ContentionList这个竞争队列中;
-
2、Contention List 中那些有资格成为候选资源的线程被移动到 Entry List 中;
-
3、任意时刻,最多只有一个线程正在竞争锁资源,该线程被成为 OnDeck;
-
4、当前已经获取到所资源的线程被称为 Owner;
-
5、处于 ContentionList、EntryList、WaitSet 中的线程都处于阻塞状态,该阻塞是由操作系统来完成的(Linux 内核下采用 pthread_mutex_lock 内核函数实现的);
-
6、作为Owner 的A 线程执行过程中,可能调用wait 释放锁,这个时候A线程进入 Wait Set , 等待被唤醒。
4.6 锁消除
为了保证数据的完整性,在进行操作时需要对这部分操作进行同步控制,但是在有些情况下,JVM检测到不可能存在共享数据竞争,这是JVM会对这些同步锁进行锁消除。
锁消除的依据是逃逸分析的数据支持
如果不存在竞争,为什么还需要加锁呢?所以锁消除可以节省毫无意义的请求锁的时间。变量是否逃逸,对于虚拟机来说需要使用数据流分析来确定,但是对于程序员来说这还不清楚么?在明明知道不存在数据竞争的代码块前加上同步吗?但是有时候程序并不是我们所想的那样?虽然没有显示使用锁,但是在使用一些JDK的内置API时,如StringBuffer、Vector、HashTable等,这个时候会存在隐形的加锁操作。比如StringBuffer的append()方法,Vector的add()方法:
public void vectorTest(){ Vector<String> vector = new Vector<String>(); for(int i = 0 ; i < 10 ; i++){ vector.add(i + ""); } System.out.println(vector); }在运行这段代码时,JVM可以明显检测到变量vector没有逃逸出方法vectorTest()之外,所以JVM可以大胆地将vector内部的加锁操作消除。
4.7 锁粗化
在使用同步锁的时候,需要让同步块的作用范围尽可能小——仅在共享数据的实际作用域中才进行同步,这样做的目的是 为了使需要同步的操作数量尽可能缩小,如果存在锁竞争,那么等待锁的线程也能尽快拿到锁。
在大多数的情况下,上述观点是正确的。但是如果一系列的连续加锁解锁操作,可能会导致不必要的性能损耗,所以引入锁粗化的概念。
锁粗话概念比较好理解,就是将多个连续的加锁、解锁操作连接在一起,扩展成一个范围更大的锁
如上面实例:
vector每次add的时候都需要加锁操作,JVM检测到对同一个对象(vector)连续加锁、解锁操作,会合并一个更大范围的加锁、解锁操作,即加锁解锁操作会移到for循环之外。
synchronized的可重入性
从互斥锁的设计上来说,当一个线程试图操作一个由其他线程持有的对象锁的临界资源时,将会处于阻塞状态,但当一个线程再次请求自己持有对象锁的临界资源时,这种情况属于重入锁,请求将会成功,在java中synchronized是基于原子性的内部锁机制,是可重入的,因此在一个线程调用synchronized方法的同时在其方法体内部调用该对象另一个synchronized方法,也就是说一个线程得到一个对象锁后再次请求该对象锁,是允许的,这就是synchronized的可重入性。如下:
public class AccountingSync implements Runnable{ static AccountingSync instance=new AccountingSync(); static int i=0; static int j=0; @Override public void run() { for(int j=0;j<1000000;j++){ //this,当前实例对象锁 synchronized(this){ i++; increase();//synchronized的可重入性 } } } public synchronized void increase(){ j++; } public static void main(String[] args) throws InterruptedException { Thread t1=new Thread(instance); Thread t2=new Thread(instance); t1.start();t2.start(); t1.join();t2.join(); System.out.println(i); } }正如代码所演示的,在获取当前实例对象锁后进入synchronized代码块执行同步代码,并在代码块中调用了当前实例对象的另外一个synchronized方法,再次请求当前实例锁时,将被允许,进而执行方法体代码,这就是重入锁最直接的体现,需要特别注意另外一种情况,当子类继承父类时,子类也是可以通过可重入锁调用父类的同步方法。注意由于synchronized是基于monitor实现的,因此每次重入,monitor中的计数器仍会加1。
线程中断与synchronized
线程中断:正如中断二字所表达的意义,在线程运行(run方法)中间打断它,在Java中,提供了以下3个有关线程中断的方法:
//中断线程(实例方法) public void Thread.interrupt(); //判断线程是否被中断(实例方法) public boolean Thread.isInterrupted(); //判断是否被中断并清除当前中断状态(静态方法) public static boolean Thread.interrupted();当一个线程处于被阻塞状态或者试图执行一个阻塞操作时,使用Thread.interrupt()方式中断该线程,注意此时将会抛出一个InterruptedException的异常,同时中断状态将会被复位(由中断状态改为非中断状态),如下代码将演示该过程:
public class InterruputSleepThread3 { public static void main(String[] args) throws InterruptedException { Thread t1 = new Thread() { @Override public void run() { //while在try中,通过异常中断就可以退出run循环 try { while (true) { //当前线程处于阻塞状态,异常必须捕捉处理,无法往外抛出 TimeUnit.SECONDS.sleep(2); } } catch (InterruptedException e) { System.out.println("Interruted When Sleep"); boolean interrupt = this.isInterrupted(); //中断状态被复位 System.out.println("interrupt:"+interrupt); } } }; t1.start(); TimeUnit.SECONDS.sleep(2); //中断处于阻塞状态的线程 t1.interrupt(); /** * 输出结果: Interruted When Sleep interrupt:false */ } }如上述代码所示,我们创建一个线程,并在线程中调用了sleep方法从而使用线程进入阻塞状态,启动线程后,调用线程实例对象的interrupt方法中断阻塞异常,并抛出InterruptedException异常,此时中断状态也将被复位。
等待唤醒机制与synchronized
所谓等待唤醒机制本篇主要指的是notify/notifyAll和wait方法,在使用这3个方法时,必须处于synchronized代码块或者synchronized方法中,否则就会抛出IllegalMonitorStateException异常,这是因为调用这几个方法前必须拿到当前对象的监视器monitor对象,也就是说notify/notifyAll和wait方法依赖于monitor对象,在前面的分析中,我们知道monitor 存在于对象头的Mark Word 中(存储monitor引用指针),而synchronized关键字可以获取 monitor ,这也就是为什么notify/notifyAll和wait方法必须在synchronized代码块或者synchronized方法调用的原因。
synchronized (obj) { obj.wait(); obj.notify(); obj.notifyAll(); }需要特别理解的一点是,与sleep方法不同的是wait方法调用完成后,线程将被暂停,但wait方法将会释放当前持有的监视器锁(monitor),直到有线程调用notify/notifyAll方法后方能继续执行,而sleep方法只让线程休眠并不释放锁。同时notify/notifyAll方法调用后,并不会马上释放监视器锁,而是在相应的synchronized(){}/synchronized方法执行结束后才自动释放锁。
sleep(long n)和wait(long n)的区别
- 1、sleep是Thread方法,而wait是Object方法。
- 2、sleep不需要强制和synchronized配合使用,而wait需要和synchronized配合使用。
- 3、sleep在睡眠的同时不会释放对象锁,但wait在等待的同时会释放对象锁。
- 4、调用了sleep(long n)和wait(long n)的线程都进入了TIMED_WAITING状态。
参考: https://www.cnblogs.com/qingshan-tang/p/12698705.html
https://www.jianshu.com/p/09de11d71ef8
https://blog.csdn.net/qq_43719634/article/details/108917522
https://www.cnblogs.com/aspirant/p/11470858.html
https://www.cnblogs.com/woshimrf/p/java-synchronized.html
https://hengheng.blog.csdn.net/article/details/104984125