何为异步请求
在Servlet 3.0之前,Servlet采用Thread-Per-Request的方式处理请求,即每一次Http请求都由某一个线程从头到尾负责处理。如果一个请求需要进行IO操作,比如访问数据库、调用第三方服务接口等,那么其所对应的线程将同步地等待IO操作完成, 而IO操作是非常慢的,所以此时的线程并不能及时地释放回线程池以供后续使用,在并发量越来越大的情况下,这将带来严重的性能问题。其请求流程大致为:
而在Servlet3.0发布后,提供了一个新特性:异步处理请求。可以先释放容器分配给请求的线程与相关资源,减轻系统负担,释放了容器所分配线程的请求,其响应将被延后,可以在耗时处理完成(例如长时间的运算)时再对客户端进行响应。其请求流程为:
在Servlet 3.0后,我们可以从HttpServletRequest对象中获得一个**AsyncContext**对象,该对象构成了异步处理的上下文,Request和Response对象都可从中获取。AsyncContext可以从当前线程传给另外的线程,并在新的线程中完成对请求的处理并返回结果给客户端,初始线程便可以还回给容器线程池以处理更多的请求。如此,通过将请求从一个线程传给另一个线程处理的过程便构成了Servlet 3.0中的异步处理。
多说几句:
随着Spring5发布,提供了一个响应式Web框架:Spring WebFlux。之后可能就不需要Servlet容器的支持了。以下是其先后对比图:
左侧是传统的基于Servlet的Spring Web MVC框架,右侧是5.0版本新引入的基于Reactive Streams的Spring WebFlux框架,从上到下依次是Router Functions,WebFlux,Reactive Streams三个新组件。
对于其发展前景还是拭目以待吧。有时间也该去了解下Spring5了。
原生异步请求API说明
在编写实际代码之前,我们来了解下一些关于异步请求的api的调用说明。
- 获取AsyncContext:根据HttpServletRequest对象获取。
- 设置监听器:可设置其开始、完成、异常、超时等事件的回调处理
其监听器的接口代码:
public interface AsyncListener extends EventListener { void onComplete(AsyncEvent event) throws IOException; void onTimeout(AsyncEvent event) throws IOException; void onError(AsyncEvent event) throws IOException; void onStartAsync(AsyncEvent event) throws IOException; }说明:
- 1.onStartAsync:异步线程开始时调用
- 2.onError:异步线程出错时调用
- 3.onTimeout:异步线程执行超时调用
- 4.onComplete:异步执行完毕时调用
一般上,我们在超时或者异常时,会返回给前端相应的提示,比如说超时了,请再次请求等等,根据各业务进行自定义返回。同时,在异步调用完成时,一般需要执行一些清理工作或者其他相关操作。
需要注意的是只有在调用request.startAsync前将监听器添加到AsyncContext,监听器的onStartAsync方法才会起作用,而调用startAsync前AsyncContext还不存在,所以第一次调用startAsync是不会被监听器中的onStartAsync方法捕获的,只有在超时后又重新开始的情况下onStartAsync方法才会起作用。
- 设置超时:通过setTimeout方法设置,单位:毫秒。
一定要设置超时时间,不能无限等待下去,不然和正常的请求就一样了。。
Servlet方式实现异步请求
前面已经提到,可通过HttpServletRequest对象中获得一个**AsyncContext**对象,该对象构成了异步处理的上下文。所以,我们来实际操作下。
- 0.编写一个简单控制层
注意:异步请求时,可以利用ThreadPoolExecutor自定义个线程池。
- 1.启动下应用,查看控制台输出就可以获悉是否在同一个线程里面了。同时,可设置下等待时间,之后就会调用超时回调方法了。大家可自己试试。
使用过滤器时,需要加入asyncSupported为true配置,开启异步请求支持。
@WebServlet(urlPatterns = "/okong", asyncSupported = true ) public class AsyncServlet extends HttpServlet ...**题外话:**其实我们可以利用在未执行asyncContext.complete()方法时请求未结束这特性,可以做个简单的文件上传进度条之类的功能。但注意请求是会超时的,需要设置超时的时间下。
Spring方式实现异步请求
在Spring中,有多种方式实现异步请求,比如callable、DeferredResult或者WebAsyncTask。每个的用法略有不同,可根据不同的业务场景选择不同的方式。以下主要介绍一些常用的用法
Callable
使用很简单,直接返回的参数包裹一层callable即可。
用法
@RequestMapping("/callable") public Callable<String> callable() { log.info("外部线程:" + Thread.currentThread().getName()); return new Callable<String>() { @Override public String call() throws Exception { log.info("内部线程:" + Thread.currentThread().getName()); return "callable!"; } }; }控制台输出:
2018-08-15 23:32:22.317 INFO 15740 --- [nio-8080-exec-2] c.l.l.s.controller.SpringController : 外部线程:http-nio-8080-exec-2 2018-08-15 23:32:22.323 INFO 15740 --- [ MvcAsync1] c.l.l.s.controller.SpringController : 内部线程:MvcAsync1超时、自定义线程设置
从控制台可以看见,异步响应的线程使用的是名为:MvcAsync1的线程。第一次再访问时,就是MvcAsync2了。若采用默认设置,会无限的创建新线程去处理异步请求,所以正常都需要配置一个线程池及超时时间。
编写一个配置类:CustomAsyncPool.java
@Configuration public class CustomAsyncPool extends WebMvcConfigurerAdapter{ /** * 配置线程池 * @return */ @Bean(name = "asyncPoolTaskExecutor") public ThreadPoolTaskExecutor getAsyncThreadPoolTaskExecutor() { ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor(); taskExecutor.setCorePoolSize(20); taskExecutor.setMaxPoolSize(200); taskExecutor.setQueueCapacity(25); taskExecutor.setKeepAliveSeconds(200); taskExecutor.setThreadNamePrefix("callable-"); // 线程池对拒绝任务(无线程可用)的处理策略,目前只支持AbortPolicy、CallerRunsPolicy;默认为后者 taskExecutor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy()); taskExecutor.initialize(); return taskExecutor; } @Override public void configureAsyncSupport(final AsyncSupportConfigurer configurer) { //处理 callable超时 configurer.setDefaultTimeout(60*1000); configurer.registerCallableInterceptors(timeoutInterceptor()); configurer.setTaskExecutor(getAsyncThreadPoolTaskExecutor()); } @Bean public TimeoutCallableProcessor timeoutInterceptor() { return new TimeoutCallableProcessor(); } }自定义一个超时异常处理类:CustomAsyncRequestTimeoutException.java
/** * 自定义超时异常类 * @author oKong * */ public class CustomAsyncRequestTimeoutException extends RuntimeException { /** * */ private static final long serialVersionUID = 8754629185999484614L; public CustomAsyncRequestTimeoutException(String uri){ super(uri); } }同时,在统一异常处理加入对CustomAsyncRequestTimeoutException类的处理即可,这样就有个统一的配置了。
之后,再运行就可以看见使用了自定义的线程池了,超时的可以自行模拟下:
2018-08-15 23:48:29.022 INFO 16060 --- [nio-8080-exec-1] c.l.l.s.controller.SpringController : 外部线程:http-nio-8080-exec-1 2018-08-15 23:48:29.032 INFO 16060 --- [ oKong-1] c.l.l.s.controller.SpringController : 内部线程:oKong-1DeferredResult
相比于callable,DeferredResult可以处理一些相对复杂一些的业务逻辑,最主要还是可以在另一个线程里面进行业务处理及返回,即可在两个完全不相干的线程间的通信。
/** * 线程池 */ public static ExecutorService FIXED_THREAD_POOL = Executors.newFixedThreadPool(30); @RequestMapping("/deferredresult") public DeferredResult<String> deferredResult(){ log.info("外部线程:" + Thread.currentThread().getName()); //设置超时时间 DeferredResult<String> result = new DeferredResult<String>(60*1000L); //处理超时事件 采用委托机制 result.onTimeout(new Runnable() { @Override public void run() { log.error("DeferredResult超时"); result.setResult("超时了!"); } }); result.onCompletion(new Runnable() { @Override public void run() { //完成后 log.info("调用完成"); } }); FIXED_THREAD_POOL.execute(new Runnable() { @Override public void run() { //处理业务逻辑 log.info("内部线程:" + Thread.currentThread().getName()); //返回结果 result.setResult("DeferredResult!!"); } }); return result; }控制台输出:
2018-08-15 23:52:27.841 INFO 12984 --- [nio-8080-exec-2] c.l.l.s.controller.SpringController : 外部线程:http-nio-8080-exec-2 2018-08-15 23:52:27.843 INFO 12984 --- [pool-1-thread-1] c.l.l.s.controller.SpringController : 内部线程:pool-1-thread-1 2018-08-15 23:52:27.872 INFO 12984 --- [nio-8080-exec-2] c.l.l.s.controller.SpringController : 调用完成注意:返回结果时记得调用下setResult方法。
题外话:利用DeferredResult可实现一些长连接的功能,比如当某个操作是异步时,我们可以保存这个DeferredResult对象,当异步通知回来时,我们在找回这个DeferredResult对象,之后在setResult会结果即可。提高性能。
WebAsyncTask
使用方法都类似,只是WebAsyncTask是直接返回了。觉得就是写法不同而已,更多细节希望大神解答!
@RequestMapping("/webAsyncTask") public WebAsyncTask<String> webAsyncTask() { log.info("外部线程:" + Thread.currentThread().getName()); WebAsyncTask<String> result = new WebAsyncTask<String>(60*1000L, new Callable<String>() { @Override public String call() throws Exception { log.info("内部线程:" + Thread.currentThread().getName()); return "WebAsyncTask!!!"; } }); result.onTimeout(new Callable<String>() { @Override public String call() throws Exception { // TODO Auto-generated method stub return "WebAsyncTask超时!!!"; } }); result.onCompletion(new Runnable() { @Override public void run() { //超时后 也会执行此方法 log.info("WebAsyncTask执行结束"); } }); return result; }控制台输出:
2018-08-15 23:55:02.568 INFO 2864 --- [nio-8080-exec-1] c.l.l.s.controller.SpringController : 外部线程:http-nio-8080-exec-1 2018-08-15 23:55:02.587 INFO 2864 --- [ oKong-1] c.l.l.s.controller.SpringController : 内部线程:oKong-1 2018-08-15 23:55:02.615 INFO 2864 --- [nio-8080-exec-2] c.l.l.s.controller.SpringController : WebAsyncTask执行结束参考资料
总结
本章节主要是讲解了异步请求的使用及相关配置,如超时,异常等处理。设置异步请求时,记得不要忘记设置超时时间。**异步请求只是提高了服务的吞吐量,提高单位时间内处理的请求数,并不会加快处理效率的,这点需要注意。**。