目录 需求 原理 工具和语言 代码过程 定义函数 导入变量 ,形成突变检验图 总结 需求 已知年份和历年最大冻土深度,计算最大冻土深度Mk突变检验。 原理 工具和语言 python jupter note
目录
- 需求
- 原理
- 工具和语言
- 代码过程
- 定义函数
- 导入变量 ,形成突变检验图
- 总结
需求
已知年份和历年最大冻土深度,计算最大冻土深度Mk突变检验。
原理
工具和语言
- python
- jupter notebook
代码过程
定义函数
def mktest(inputdata): import numpy as np inputdata = np.array(inputdata) n=inputdata.shape[0] Sk = np.zeros(n) UFk = np.zeros(n) r = 0 for i in range(1,n): for j in range(i): if inputdata[i] > inputdata[j]: r = r+1 Sk[i] = r E = (i+1)*i/4 Var = (i+1)*i*(2*(i+1)+5)/72 UFk[i] = (Sk[i] - E)/np.sqrt(Var) Sk2 = np.zeros(n) UBk = np.zeros(n) inputdataT = inputdata[::-1] r = 0 for i in range(1,n): for j in range(i): if inputdataT[i] > inputdataT[j]: r = r+1 Sk2[i] = r E = (i+1)*(i/4) Var = (i+1)*i*(2*(i+1)+5)/72 UBk[i] = -(Sk2[i] - E)/np.sqrt(Var) UBk2 = UBk[::-1] return UFk, UBk2 定义函数计算变量 ```python def mktest(inputdata): import numpy as np inputdata = np.array(inputdata) n=inputdata.shape[0] s = 0 Sk = np.zeros(n) UFk = np.zeros(n) for i in range(1,n): for j in range(i): if inputdata[i] > inputdata[j]: s = s+1 else: s = s+0 Sk[i] = s E = (i+1)*(i/4) Var = (i+1)*i*(2*(i+1)+5)/72 UFk[i] = (Sk[i] - E)/np.sqrt(Var) Sk2 = np.zeros(n) UBk = np.zeros(n) s = 0 inputdataT = inputdata[::-1] for i in range(1,n): for j in range(i): if inputdataT[i] > inputdataT[j]: s = s+1 else: s = s+0 Sk2[i] = s E = (i+1)*(i/4) Var = (i+1)*i*(2*(i+1)+5)/72 UBk[i] = -(Sk2[i] - E)/np.sqrt(Var) UBk2 = UBk[::-1] return UFk, UBk2
导入变量 ,形成突变检验图
import matplotlib.dates as mdates #處理日期 import matplotlib.pyplot as plt import numpy as np from pylab import mpl from matplotlib.pyplot import MultipleLocator mpl.rcParams['font.sans-serif'] = ['SimHei'] #防止标题出现乱码。 plt.rcParams['axes.unicode_minus'] = False #防止出现图上的负数为方框。 # y值和x值 分别输入六个站点的最大冻土深度值,将值以列表的方式导入 a = [150,150,114,109,96,95,83,76,109,80,115,80,94,86,133,91,110,116,114,128,172,172, 162,121,175,151,110,92,116,156,134,110,89,97,109,157,153,105,76,87,122,78,97,93,141,162, 123,133,161,128,138,104,133,102,140,109,118,86,126,92,121,149,116] #这个部分值可以替换成为要检验的气温、水文等值 x_values=list(range(1961,2022)) uf,ub = mktest(a) plt.figure(figsize=(8,4)) #图片的大小 plt.plot(uf,'r',label='UFk') plt.plot(ub,'b',label='UBk') plt.xticks([0,5,10,15,20,25,30,35,40,45,50,55,60],['1960','1965','1970','1975','1980','1985','1990','1995','2000','2005','2010','2015','2020',]) #将默认的x轴数值替换为年份的X轴,默认是0-61,一共62个值,代表X轴内容。 # 0.01显著性检验 plt.legend() plt.axhline(1.96) plt.axhline(-1.96) #设置图片的标签(标题) plt.title("富蕴点最大冻土深度突变检验结果")#x轴上的名字 plt.xlabel("年份(1960年-2022年)")#x轴上的名字 plt.ylabel("突变值波动参数")#y轴上的名字 plt.grid() #形成网格线输出 x_major_locator=MultipleLocator(5) plt.show()
最后成图以后的样子。
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持自由互联。