当前位置 : 主页 > 网络编程 > 其它编程 >

目标检测领域2015

来源:互联网 收集:自由互联 发布时间:2023-07-02
本文转载自http:blog.csdn.netzhuiqiukarticledetails53613879https:handong1587.github.iod 本文转载自http://blog.csdn.net/zhuiqiuk/article/details/53613879 https://handong1587.github.io/deep_learning/2015/10/09/nlp.html http://blog.csd
本文转载自http:blog.csdn.netzhuiqiukarticledetails53613879https:handong1587.github.iod

本文转载自http://blog.csdn.net/zhuiqiuk/article/details/53613879

https://handong1587.github.io/deep_learning/2015/10/09/nlp.html

http://blog.csdn.net/hx921123/article/details/55803514

Jump to...
  • Leaderboard
  • Papers
  • R-CNN
  • MultiBox
  • SPP-Net
  • DeepID-Net
  • NoC
  • Fast R-CNN
  • DeepBox
  • MR-CNN
  • Faster R-CNN
  • YOLO
  • AttentionNet
  • DenseBox
  • SSD
  • Inside-Outside Net (ION)
  • G-CNN
  • HyperNet
  • MultiPathNet
  • CRAFT
  • OHEM
  • R-FCN
  • MS-CNN
  • PVANET
  • GBD-Net
  • StuffNet
  • Feature Pyramid Network (FPN)
  • Detection From Video
  • T-CNN
  • Datasets
  • Object Detection in 3D
  • Salient Object Detection
  • Specific Object Deteciton
  • Face Deteciton
  • UnitBox
  • MTCNN
  • Datasets / Benchmarks
  • Facial Point / Landmark Detection
  • People Detection
  • Person Head Detection
  • Pedestrian Detection
  • Vehicle Detection
  • Traffic-Sign Detection
  • Boundary / Edge / Contour Detection
  • Skeleton Detection
  • Fruit Detection
  • Others
  • Object Proposal
  • Localization
  • Tutorials
  • Projects
  • Blogs
  • MethodVOC2007VOC2010VOC2012ILSVRC 2013MSCOCO 2015SpeedOverFeat   24.3%  R-CNN (AlexNet)58.5%53.7%53.3%31.4%  R-CNN (VGG16)66.0%     SPP_net(ZF-5)54.2%(1-model), 60.9%(2-model)  31.84%(1-model), 35.11%(6-model)  DeepID-Net64.1%  50.3%  NoC73.3% 68.8%   Fast-RCNN (VGG16)70.0%68.8%68.4% 19.7%([0.5-0.95]), 35.9%(0.5) MR-CNN78.2% 73.9%   Faster-RCNN (VGG16)78.8% 75.9% 21.9%([0.5-0.95]), 42.7%(0.5)198msFaster-RCNN (ResNet-101)85.6% 83.8% 37.4%([0.5-0.95]), 59.0%(0.5) SSD300 (VGG16)72.1%    58 fpsSSD500 (VGG16)75.1%    23 fpsION79.2% 76.4%   AZ-Net70.4%   22.3%([0.5-0.95]), 41.0%(0.5) CRAFT75.7% 71.3%48.5%  OHEM78.9% 76.3% 25.5%([0.5-0.95]), 45.9%(0.5) R-FCN (ResNet-50)77.4%    0.12sec(K40), 0.09sec(TitianX)R-FCN (ResNet-101)79.5%    0.17sec(K40), 0.12sec(TitianX)R-FCN (ResNet-101),multi sc train83.6% 82.0% 31.5%([0.5-0.95]), 53.2%(0.5) PVANet 9.081.8% 82.5%  750ms(CPU), 46ms(TitianX)

    Leaderboard

    Detection Results: VOC2012

    • intro: Competition “comp4” (train on own data)
    • homepage: http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid114

    Papers

    Deep Neural Networks for Object Detection

    • paper: http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf

    OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

    • intro: A deep version of the sliding window method, predicts bounding box directly from each location of the topmost feature map after knowing the confidences of the underlying object categories.
    • intro: training a convolutional network to simultaneously classify, locate and detect objects in images can boost the classification accuracy and the detection and localization accuracy of all tasks
    • arxiv: http://arxiv.org/abs/1312.6229
    • github: https://github.com/sermanet/OverFeat
    • code: http://cilvr.nyu.edu/doku.php?idsoftware:overfeat:start

    R-CNN

    Rich feature hierarchies for accurate object detection and semantic segmentation

    • intro: R-CNN
    • arxiv: http://arxiv.org/abs/1311.2524
    • supp: http://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr-supp.pdf
    • slides: http://www.image-net.org/challenges/LSVRC/2013/slides/r-cnn-ilsvrc2013-workshop.pdf
    • slides: http://www.cs.berkeley.edu/~rbg/slides/rcnn-cvpr14-slides.pdf
    • github: https://github.com/rbgirshick/rcnn
    • notes: http://zhangliliang.com/2014/07/23/paper-note-rcnn/
    • caffe-pr(“Make R-CNN the Caffe detection example”):https://github.com/BVLC/caffe/pull/482

    MultiBox

    Scalable Object Detection using Deep Neural Networks

    • intro: MultiBox. Train a CNN to predict Region of Interest.
    • arxiv: http://arxiv.org/abs/1312.2249
    • github: https://github.com/google/multibox
    • blog: https://research.googleblog.com/2014/12/high-quality-object-detection-at-scale.html

    Scalable, High-Quality Object Detection

    • intro: MultiBox
    • arxiv: http://arxiv.org/abs/1412.1441
    • github: https://github.com/google/multibox

    SPP-Net

    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

    • intro: ECCV 2014 / TPAMI 2015
    • arxiv: http://arxiv.org/abs/1406.4729
    • github: https://github.com/ShaoqingRen/SPP_net
    • notes: http://zhangliliang.com/2014/09/13/paper-note-sppnet/

    Learning Rich Features from RGB-D Images for Object Detection and Segmentation

    • arxiv: http://arxiv.org/abs/1407.5736

    DeepID-Net

    DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

    • intro: PAMI 2016
    • intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations
    • project page:http://www.ee.cuhk.edu.hk/%CB%9Cwlouyang/projects/imagenetDeepId/index.html
    • arxiv: http://arxiv.org/abs/1412.5661

    Object Detectors Emerge in Deep Scene CNNs

    • arxiv: http://arxiv.org/abs/1412.6856
    • paper: https://www.robots.ox.ac.uk/~vgg/rg/papers/zhou_iclr15.pdf
    • paper: https://people.csail.mit.edu/khosla/papers/iclr2015_zhou.pdf
    • slides: http://places.csail.mit.edu/slide_iclr2015.pdf

    segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

    • intro: CVPR 2015
    • project(codedata): https://www.cs.toronto.edu/~yukun/segdeepm.html
    • arxiv: https://arxiv.org/abs/1502.04275
    • github: https://github.com/YknZhu/segDeepM

    NoC

    Object Detection Networks on Convolutional Feature Maps

    • intro: TPAMI 2015
    • arxiv: http://arxiv.org/abs/1504.06066

    Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

    • arxiv: http://arxiv.org/abs/1504.03293
    • slides: http://www.ytzhang.net/files/publications/2015-cvpr-det-slides.pdf
    • github: https://github.com/YutingZhang/fgs-obj

    Fast R-CNN

    Fast R-CNN

    • arxiv: http://arxiv.org/abs/1504.08083
    • slides: http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
    • github: https://github.com/rbgirshick/fast-rcnn
    • webcam demo: https://github.com/rbgirshick/fast-rcnn/pull/29
    • notes: http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/
    • notes: http://blog.csdn.net/linj_m/article/details/48930179
    • github(“Fast R-CNN in MXNet”): https://github.com/precedenceguo/mx-rcnn
    • github: https://github.com/mahyarnajibi/fast-rcnn-torch
    • github: https://github.com/apple2373/chainer-simple-fast-rnn
    • github(Tensorflow): https://github.com/zplizzi/tensorflow-fast-rcnn

    DeepBox

    DeepBox: Learning Objectness with Convolutional Networks

    • arxiv: http://arxiv.org/abs/1505.02146
    • github: https://github.com/weichengkuo/DeepBox

    MR-CNN

    Object detection via a multi-region 114

    PVANet: Lightweight Deep Neural Networks for Real-time Object Detection

    • intro: Presented at NIPS 2016 Workshop on Efficient Methods for Deep Neural Networks (EMDNN). Continuation of arXiv:1608.08021
    • arxiv: https://arxiv.org/abs/1611.08588

    GBD-Net

    Gated Bi-directional CNN for Object Detection

    • intro: The Chinese University of Hong Kong 爱奇艺
    • keywords: object retrieval, object detection, scene classification
    • slides: http://on-demand.gputechconf.com/gtc/2016/presentation/s6362-wang-tao-cnn-based-object-detection-large-video-images.pdf

    Datasets

    YouTube-Objects dataset v2.2

    • homepage: http://calvin.inf.ed.ac.uk/datasets/youtube-objects-dataset/

    ILSVRC2015: Object detection from video (VID)

    • homepage: http://vision.cs.unc.edu/ilsvrc2015/download-videos-3j16.php#vid

    Object Detection in 3D

    Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks

    • arxiv: https://arxiv.org/abs/1609.06666

    Salient Object Detection

    This task involves predicting the salient regions of an image given by human eye fixations.

    Best Deep Saliency Detection Models (CVPR 2016 72648

    Saliency Detection by Multi-Context Deep Learning

    • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhao_Saliency_Detection_by_2015_CVPR_paper.pdf

    DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection

    • arxiv: http://arxiv.org/abs/1510.05484

    SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection

    • paper: www.shengfenghe.com/supercnn-a-superpixelwise-convolutional-neural-network-for-salient-object-detection.html

    Shallow and Deep Convolutional Networks for Saliency Prediction

    • arxiv: http://arxiv.org/abs/1603.00845
    • github: https://github.com/imatge-upc/saliency-2016-cvpr

    Recurrent Attentional Networks for Saliency Detection

    • intro: CVPR 2016. recurrent attentional convolutional-deconvolution network (RACDNN)
    • arxiv: http://arxiv.org/abs/1604.03227

    Two-Stream Convolutional Networks for Dynamic Saliency Prediction

    • arxiv: http://arxiv.org/abs/1607.04730

    Unconstrained Salient Object Detection

    Unconstrained Salient Object Detection via Proposal Subset Optimization

    • intro: CVPR 2016
    • project page: http://cs-people.bu.edu/jmzhang/sod.html
    • paper: http://cs-people.bu.edu/jmzhang/SOD/CVPR16SOD_camera_ready.pdf
    • github: https://github.com/jimmie33/SOD
    • caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-object-proposal-models-for-salient-object-detection

    DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection

    • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_DHSNet_Deep_Hierarchical_CVPR_2016_paper.pdf

    Salient Object Subitizing

    • intro: CVPR 2015
    • intro: predicting the existence and the number of salient objects in an image using holistic cues
    • project page: http://cs-people.bu.edu/jmzhang/sos.html
    • arxiv: http://arxiv.org/abs/1607.07525
    • paper: http://cs-people.bu.edu/jmzhang/SOS/SOS_preprint.pdf
    • caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo#cnn-models-for-salient-object-subitizing

    Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection

    • intro: ACMMM 2016. deeply-supervised recurrent convolutional neural network (DSRCNN)
    • arxiv: http://arxiv.org/abs/1608.05177

    Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs

    • intro: ECCV 2016
    • arxiv: http://arxiv.org/abs/1608.05186

    Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection

    • arxiv: http://arxiv.org/abs/1608.08029

    A Deep Multi-Level Network for Saliency Prediction

    • arxiv: http://arxiv.org/abs/1609.01064

    Visual Saliency Detection Based on Multiscale Deep CNN Features

    • intro: IEEE Transactions on Image Processing
    • arxiv: http://arxiv.org/abs/1609.02077

    A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection

    • intro: DSCLRCN
    • arxiv: https://arxiv.org/abs/1610.01708

    Deeply supervised salient object detection with short connections

    • arxiv: https://arxiv.org/abs/1611.04849

    Weakly Supervised Top-down Salient Object Detection

    • intro: Nanyang Technological University
    • arxiv: https://arxiv.org/abs/1611.05345

    Specific Object Deteciton

    Face Deteciton

    Multi-view Face Detection Using Deep Convolutional Neural Networks

    • intro: Yahoo
    • arxiv: http://arxiv.org/abs/1502.02766

    From Facial Parts Responses to Face Detection: A Deep Learning Approach

    • project page: http://personal.ie.cuhk.edu.hk/~ys014/projects/Faceness/Faceness.html

    Compact Convolutional Neural Network Cascade for Face Detection

    • arxiv: http://arxiv.org/abs/1508.01292
    • github: https://github.com/Bkmz21/FD-Evaluation

    Face Detection with End-to-End Integration of a ConvNet and a 3D Model

    • intro: ECCV 2016
    • arxiv: https://arxiv.org/abs/1606.00850
    • github(MXNet): https://github.com/tfwu/FaceDetection-ConvNet-3D

    Supervised Transformer Network for Efficient Face Detection

    • arxiv: http://arxiv.org/abs/1607.05477

    UnitBox

    UnitBox: An Advanced Object Detection Network

    • intro: ACM MM 2016
    • arxiv: http://arxiv.org/abs/1608.01471

    Bootstrapping Face Detection with Hard Negative Examples

    • author: 万韶华 小米.
    • intro: Faster R-CNN, hard negative mining. state-of-the-art on the FDDB dataset
    • arxiv: http://arxiv.org/abs/1608.02236

    Grid Loss: Detecting Occluded Faces

    • intro: ECCV 2016
    • arxiv: https://arxiv.org/abs/1609.00129
    • paper: http://lrs.icg.tugraz.at/pubs/opitz_eccv_16.pdf
    • poster: http://www.eccv2016.org/files/posters/P-2A-34.pdf

    A Multi-Scale Cascade Fully Convolutional Network Face Detector

    • intro: ICPR 2016
    • arxiv: http://arxiv.org/abs/1609.03536

    MTCNN

    Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks

    Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks

    • project page: https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html
    • arxiv: https://arxiv.org/abs/1604.02878
    • github(Matlab): https://github.com/kpzhang93/MTCNN_face_detection_alignment
    • github(MXNet): https://github.com/pangyupo/mxnet_mtcnn_face_detection
    • github: https://github.com/DaFuCoding/MTCNN_Caffe

    Datasets / Benchmarks

    FDDB: Face Detection Data Set and Benchmark

    • homepage: http://vis-www.cs.umass.edu/fddb/index.html
    • results: http://vis-www.cs.umass.edu/fddb/results.html

    WIDER FACE: A Face Detection Benchmark

    • homepage: http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
    • arxiv: http://arxiv.org/abs/1511.06523

    Facial Point / Landmark Detection

    Deep Convolutional Network Cascade for Facial Point Detection

    • homepage: http://mmlab.ie.cuhk.edu.hk/archive/CNN_FacePoint.htm
    • paper: http://www.ee.cuhk.edu.hk/~xgwang/papers/sunWTcvpr13.pdf
    • github: https://github.com/luoyetx/deep-landmark

    A Recurrent Encoder-Decoder Network for Sequential Face Alignment

    • intro: ECCV 2016
    • arxiv: https://arxiv.org/abs/1608.05477

    Detecting facial landmarks in the video based on a hybrid framework

    • arxiv: http://arxiv.org/abs/1609.06441

    Deep Constrained Local Models for Facial Landmark Detection

    • arxiv: https://arxiv.org/abs/1611.08657

    People Detection

    End-to-end people detection in crowded scenes

    • arxiv: http://arxiv.org/abs/1506.04878
    • github: https://github.com/Russell91/reinspect
    • ipn:http://nbviewer.ipython.org/github/Russell91/ReInspect/blob/master/evaluation_reinspect.ipynb

    Detecting People in Artwork with CNNs

    • intro: ECCV 2016 Workshops
    • arxiv: https://arxiv.org/abs/1610.08871

    Person Head Detection

    Context-aware CNNs for person head detection

    • arxiv: http://arxiv.org/abs/1511.07917
    • github: https://github.com/aosokin/cnn_head_detection

    Pedestrian Detection

    Pedestrian Detection aided by Deep Learning Semantic Tasks

    • intro: CVPR 2015
    • project page: http://mmlab.ie.cuhk.edu.hk/projects/TA-CNN/
    • paper: http://arxiv.org/abs/1412.0069

    Deep Learning Strong Parts for Pedestrian Detection

    • intro: ICCV 2015. CUHK. DeepParts
    • intro: Achieving 11.89% average miss rate on Caltech Pedestrian Dataset
    • paper: http://personal.ie.cuhk.edu.hk/~pluo/pdf/tianLWTiccv15.pdf

    Deep convolutional neural networks for pedestrian detection

    • arxiv: http://arxiv.org/abs/1510.03608
    • github: https://github.com/DenisTome/DeepPed

    New algorithm improves speed and accuracy of pedestrian detection

    • blog: http://www.eurekalert.org/pub_releases/2016-02/uoc–nai020516.php

    Pushing the Limits of Deep CNNs for Pedestrian Detection

    • intro: “set a new record on the Caltech pedestrian dataset, lowering the log-average miss rate from 11.7% to 8.9%”
    • arxiv: http://arxiv.org/abs/1603.04525

    A Real-Time Deep Learning Pedestrian Detector for Robot Navigation

    • arxiv: http://arxiv.org/abs/1607.04436

    A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation

    • arxiv: http://arxiv.org/abs/1607.04441

    Is Faster R-CNN Doing Well for Pedestrian Detection?

    • arxiv: http://arxiv.org/abs/1607.07032
    • github: https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian

    Reduced Memory Region Based Deep Convolutional Neural Network Detection

    • intro: IEEE 2016 ICCE-Berlin
    • arxiv: http://arxiv.org/abs/1609.02500

    Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection

    • arxiv: https://arxiv.org/abs/1610.03466

    Multispectral Deep Neural Networks for Pedestrian Detection

    • intro: BMVC 2016 oral
    • arxiv: https://arxiv.org/abs/1611.02644

    Vehicle Detection

    DAVE: A Unified Framework for Fast Vehicle Detection and Annotation

    • intro: ECCV 2016
    • arxiv: http://arxiv.org/abs/1607.04564

    Traffic-Sign Detection

    Traffic-Sign Detection and Classification in the Wild

    • project page(codedataset): http://cg.cs.tsinghua.edu.cn/traffic-sign/
    • paper: http://120.52.73.11/www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Traffic-Sign_Detection_and_CVPR_2016_paper.pdf
    • code eyJpIjoiTnpaa01UWXpPRE0xTURFMiIsInQiOiJJRjcybjkwTmtmallORUhLOFFFODBDclFqUlB3SWlRVXJXb1MrQ013TDRIMGxLQWlBczFIeWg0TFRUdnN2UHY2ZWFiXC9QQVwvQzBHM3B0UzBZblpOSmUyU1FcLzNPWXI4cml2VERwTTJsOFwvOEk9In0%3D

    Deep Learning for Object Detection with DIGITS

    • blog: https://devblogs.nvidia.com/parallelforall/deep-learning-object-detection-digits/

    Analyzing The Papers Behind Facebook’s Computer Vision Approach

    • keywords: DeepMask, SharpMask, MultiPathNet
    • blog: https://adeshpande3.github.io/adeshpande3.github.io/Analyzing-the-Papers-Behind-Facebook’s-Computer-Vision-Approach/

    **Easily Create High Quality Object Detectors with Deep Learning **

    • intro: dlib v19.2
    • blog: http://blog.dlib.net/2016/10/easily-create-high-quality-object.html

    How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit

    • blog: https://blogs.technet.microsoft.com/machinelearning/2016/10/25/how-to-train-a-deep-learned-object-detection-model-in-cntk/
    • github:https://github.com/Microsoft/CNTK/tree/master/Examples/Image/Detection/FastRCNN

    Object Detection in Satellite Imagery, a Low Overhead Approach

    • part 1: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-i-cbd96154a1b7#.2csh4iwx9
    • part 2: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-ii-893f40122f92#.f9b7dgf64

    You Only Look Twice — Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks

    • part 1: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-38dad1cf7571#.fmmi2o3of
    • part 2: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-34f72f659588#.nwzarsz1t

    Faster R-CNN Pedestrian and Car Detection

    • blog: https://bigsnarf.wordpress.com/2016/11/07/faster-r-cnn-pedestrian-and-car-detection/
    • ipn: https://gist.github.com/bigsnarfdude/2f7b2144065f6056892a98495644d3e0#file-demo_faster_rcnn_notebook-ipynb
    • github: https://github.com/bigsnarfdude/Faster-RCNN_TF
    【文章转自阿里云服务器代理商 http://www.558idc.com/aliyun.html 复制请保留原URL】
    上一篇:abort()函数
    下一篇:没有了
    网友评论