当前位置 : 主页 > 网络编程 > 其它编程 >

Tensorflow用别人训练好的模型进行图像分类(可运行)

来源:互联网 收集:自由互联 发布时间:2023-07-02
【先说一下自己想说的】:昨晚上找了很久才搞定,代码和给的文件根本不匹配,转载也不验证一下就转。弄得我花了一整天!(我就为了加个单击图片显示可能的标签这么个功能我…
【先说一下自己想说的】:昨晚上找了很久才搞定,代码和给的文件根本不匹配,转载也不验证一下就转。弄得我花了一整天!(我就为了加个单击图片显示可能的标签这么个功能我……我容易吗……555)原

【先说一下自己想说的】:昨晚上找了很久才搞定,代码和给的文件根本不匹配,转载也不验证一下就转。弄得我花了一整天!(我就为了加个单击图片显示可能的标签这么个功能我……我容易吗……555)

原帖:http://www.cnblogs.com/denny402/p/6942580.html(感谢此源贴的下方评论指引我找到了配套的库)

然后我鄙视一下这些转载不发源链接的↓(╬▔皿▔)凸(还有就是不验证就敢转发):

https://blog.csdn.net/u011600477/article/details/78607883

https://blog.csdn.net/m0_37167788/article/details/79084288

与原帖配套的模型和其他文件在:(不知道是不是源博主搞错了,博主给的云盘里的东西完全是不着边,这帮转贴的也不自己验证以下,像是传下去的谎言——真是荒谬又可笑)

“看到这个链接了,里面有博主提到的模型和pbtxt文件https://github.com/taey16/tf/tree/master/imagenet”

以下是原帖,上边该补充的都说了=================分割线=============

谷歌在大型图像数据库ImageNet上训练好了一个Inception-v3模型,这个模型我们可以直接用来进来图像分类。下载地址:https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip下载完解压后,得到几个文件:

其中的classify_image_graph_def.pb 文件就是训练好的Inception-v3模型。

imagenet_synset_to_human_label_map.txt是类别文件。

随机找一张图片:如猫对这张图片进行识别,看它属于什么类?

代码如下:先创建一个类NodeLookup来将softmax概率值映射到标签上。

然后创建一个函数create_graph()来读取模型。

最后读取图片进行分类识别:

# -*- coding: utf-8 -*-import tensorflow as tfimport numpy as npimport reimport osmodel_dir='D:/tf/model/'image='d:/cat.jpg'#将类别ID转换为人类易读的标签class NodeLookup(object): def __init__(self, label_lookup_path=None, uid_lookup_path=None): if not label_lookup_path: label_lookup_path = os.path.join( model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt') if not uid_lookup_path: uid_lookup_path = os.path.join( model_dir, 'imagenet_synset_to_human_label_map.txt') self.node_lookup = self.load(label_lookup_path, uid_lookup_path) def load(self, label_lookup_path, uid_lookup_path): if not tf.gfile.Exists(uid_lookup_path): tf.logging.fatal('File does not exist %s', uid_lookup_path) if not tf.gfile.Exists(label_lookup_path): tf.logging.fatal('File does not exist %s', label_lookup_path) # Loads mapping from string UID to human-readable string proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines() uid_to_human = {} p = re.compile(r'[n\d]*[ \S,]*') for line in proto_as_ascii_lines: parsed_items = p.findall(line) uid = parsed_items[0] human_string = parsed_items[2] uid_to_human[uid] = human_string # Loads mapping from string UID to integer node ID. node_id_to_uid = {} proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines() for line in proto_as_ascii: if line.startswith(' target_class:'): target_class = int(line.split(': ')[1]) if line.startswith(' target_class_string:'): target_class_string = line.split(': ')[1] node_id_to_uid[target_class] = target_class_string[1:-2] # Loads the final mapping of integer node ID to human-readable string node_id_to_name = {} for key, val in node_id_to_uid.items(): if val not in uid_to_human: tf.logging.fatal('Failed to locate: %s', val) name = uid_to_human[val] node_id_to_name[key] = name return node_id_to_name def id_to_string(self, node_id): if node_id not in self.node_lookup: return '' return self.node_lookup[node_id]#读取训练好的Inception-v3模型来创建graphdef create_graph(): with tf.gfile.FastGFile(os.path.join( model_dir, 'classify_image_graph_def.pb'), 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) tf.import_graph_def(graph_def, name='')#读取图片image_data = tf.gfile.FastGFile(image, 'rb').read()#创建graphcreate_graph()sess=tf.Session()#Inception-v3模型的最后一层softmax的输出softmax_tensor= sess.graph.get_tensor_by_name('softmax:0')#输入图像数据,得到softmax概率值(一个shape=(1,1008)的向量)predictiOns= sess.run(softmax_tensor,{'DecodeJpeg/contents:0': image_data})#(1,1008)->(1008,)predictiOns= np.squeeze(predictions)# ID --> English string label.node_lookup = NodeLookup()#取出前5个概率最大的值(top-5)top_5 = predictions.argsort()[-5:][::-1]for node_id in top_5: human_string = node_lookup.id_to_string(node_id) score = predictions[node_id] print('%s (score = %.5f)' % (human_string, score))sess.close()

最后输出:

tiger cat (score = 0.40316)Egyptian cat (score = 0.21686)tabby, tabby cat (score = 0.21348)lynx, catamount (score = 0.01403)Persian cat (score = 0.00394)

以下是亲自验证,上图====================分割线====================================

上面这张图,识别成seashore,还是挺准的。

注意,我是windows环境运行的,目录要用r'路径'或者双反斜杠"\"!不然总会出如下错误

tensorflow.python.framework.errors_impl.NotFoundError: NewRandomAccessFile failed to Create/Open: ‪D: f.jpg : ϵ ͳ\udcd5Ҳ\udcbb\udcb5\udcbdָ\udcb6\udca8\udcb5\udcc4\udcceļ\udcfe\udca1\udca3; No such file or directory

还有,我目前不知道为什么一把图片弄个路径就出错,目前我是直接放文件夹里才能用的。不然就是下面那个错误

#读取图片image_data = tf.gfile.FastGFile('1.jpg', 'rb').read() #直接的'1.jpg'

tensorflow.python.framework.errors_impl.InvalidArgumentError: NewRandomAccessFile failed to Create/Open: ‪D:\tf\1.jpg : \udcceļ\udcfe\udcc3\udcfb\udca1\udca2Ŀ¼\udcc3\udcfb\udcbb\udcf2\udcbe\udced\udcb1\udcea\udcd3﷨\udcb2\udcbb\udcd5\udcfdȷ\udca1\udca3

; Unknown error

上一篇:1<这个比较在JavaScript环境是如何比较的
下一篇:没有了
网友评论