目录 前言 格子颜色表 渐变色带 前言 在做色彩相关的算法分析时候,经常需要使用规则的颜色表来进行辅助。下面用python(numpy和opencv)来生成颜色表并保存为图片。 有两种类型: 格
- 前言
- 格子颜色表
- 渐变色带
在做色彩相关的算法分析时候,经常需要使用规则的颜色表来进行辅助。下面用python(numpy和opencv)来生成颜色表并保存为图片。
有两种类型:
- 格子形状的颜色表
- 渐变色带
长的样子分别如下:
格子颜色表这里需要注意,当划分的颜色数量比较少时,最好把一个颜色像素扩展成为一个格子,不然的话整个图看起来就太小了。
# -*- coding: utf-8 -*- import cv2 import numpy as np def generate_color_chart(block_num=18, block_columns=6, grid_width=32, grid_height=None): """ Generate color chart by uniformly distributed color indexes, only support 8 bit (uint8). Parameters ---------- block_num: Block number of color chart, also the number of color indexes. block_columns: Column number of color chart. Row number is computed by block_num / block_columns grid_width: Width of color grid grid_height: Height of color grid. If not set, it will equal to grid_width. """ color_index = np.linspace(0, 255, block_num) color_index = np.uint8(np.round(color_index)) if grid_height is None: grid_height = grid_width # compute sizes block_rows = np.int_(np.ceil(block_num / block_columns)) block_width = grid_width * block_num block_height = grid_height * block_num width = block_width * block_columns height = block_height * block_rows result = np.zeros((height, width, 3), dtype=np.uint8) # compute red-green block, (blue will be combined afterward) red_block, green_block = np.meshgrid(color_index, color_index) red_block = expand_pixel_to_grid(red_block, grid_width, grid_height) green_block = expand_pixel_to_grid(green_block, grid_width, grid_height) rg_block = np.concatenate([red_block, green_block], axis=2) # combine blue channel for i in range(block_num): blue = np.ones_like(rg_block[..., 0], dtype=np.uint8) * color_index[i] color_block = np.concatenate([rg_block, blue[..., np.newaxis]], axis=2) # compute block index block_row = i // block_columns block_column = i % block_columns xmin = block_column * block_width ymin = block_row * block_height xmax = xmin + block_width ymax = ymin + block_height result[ymin:ymax, xmin:xmax, :] = color_block result = result[..., ::-1] # convert from rgb to bgr return result def expand_pixel_to_grid(matrix, grid_width, grid_height): """ Expand a pixel to a grid. Inside the grid, every pixel have the same value as the source pixel. Parameters ---------- matrix: 2D numpy array grid_width: width of grid grid_height: height of grid """ height, width = matrix.shape[:2] new_heigt = height * grid_height new_width = width * grid_width repeat_num = grid_width * grid_height matrix = np.expand_dims(matrix, axis=2).repeat(repeat_num, axis=2) matrix = np.reshape(matrix, (height, width, grid_height, grid_width)) # put `height` and `grid_height` axes together; # put `width` and `grid_width` axes together. matrix = np.transpose(matrix, (0, 2, 1, 3)) matrix = np.reshape(matrix, (new_heigt, new_width, 1)) return matrix if __name__ == '__main__': color_chart16 = generate_color_chart(block_num=16, grid_width=32, block_columns=4) color_chart18 = generate_color_chart(block_num=18, grid_width=32, block_columns=6) color_chart36 = generate_color_chart(block_num=36, grid_width=16, block_columns=6) color_chart52 = generate_color_chart(block_num=52, grid_width=8, block_columns=13) color_chart256 = generate_color_chart(block_num=256, grid_width=1, block_columns=16) cv2.imwrite('color_chart16.png', color_chart16) cv2.imwrite('color_chart18.png', color_chart18) cv2.imwrite('color_chart36.png', color_chart36) cv2.imwrite('color_chart52.png', color_chart52) cv2.imwrite('color_chart256.png', color_chart256)渐变色带
# -*- coding: utf-8 -*- import cv2 import numpy as np def generate_color_band(left_colors, right_colors, grade=256, height=32): """ Generate color bands by uniformly changing from left colors to right colors. Note that there might be multiple bands. Parameters ---------- left_colors: Left colors of the color bands. right_colors: Right colors of the color bands. grade: how many colors are contained in one color band. height: height of one color band. """ # check and process color parameters, which should be 2D list # after processing if not isinstance(left_colors, (tuple, list)): left_colors = [left_colors] if not isinstance(right_colors, (tuple, list)): right_colors = [right_colors] if not isinstance(left_colors[0], (tuple, list)): left_colors = [left_colors] if not isinstance(right_colors[0], (tuple, list)): right_colors = [right_colors] # initialize channel, and all other colors should have the same channel channel = len(left_colors[0]) band_num = len(left_colors) result = [] for i in range(band_num): left_color = left_colors[i] right_color = right_colors[i] if len(left_color) != channel or len(right_color) != channel: raise ValueError("All colors should have same channel number") color_band = np.linspace(left_color, right_color, grade) color_band = np.expand_dims(color_band, axis=0) color_band = np.repeat(color_band, repeats=height, axis=0) color_band = np.clip(np.round(color_band), 0, 255).astype(np.uint8) result.append(color_band) result = np.concatenate(result, axis=0) result = np.squeeze(result) return result if __name__ == '__main__': black = [0, 0, 0] white = [255, 255, 255] red = [0, 0, 255] green = [0, 255, 0] blue = [255, 0, 0] gray_band = generate_color_band([[0], [255]], [[255], [0]]) color_band8 = generate_color_band( [black, white, red, green, blue, black, black, black], [white, black, white, white, white, red, green, blue] ) cv2.imwrite('gray_band.png', gray_band) cv2.imwrite('color_band8.png', color_band8)
到此这篇关于利用Python实现生成颜色表(color chart)的文章就介绍到这了,更多相关Python颜色表内容请搜索自由互联以前的文章或继续浏览下面的相关文章希望大家以后多多支持自由互联!
【感谢龙石为本站提供数据质量管理系统,http://www.longshidata.com/pages/quality.html】