- \epsilon - \bigoplus - \bigstar - \bull - \bullet - \infin - \nabla - \cdots - \vdots - \ddots - \ldots - \gamma - \Delta - \delta - \tag{1} - \mathbb{E} - \sum_0^1 - \sum_{s {’}} {a} - \forall $$ \begin{aligned} G_t=R_{t+1}+R_{t+2}+R_{
- \epsilon
- \bigoplus
- \bigstar
- \bull
- \bullet
- \infin
- \nabla
- \cdots
- \vdots
- \ddots
- \ldots
- \gamma
- \Delta
- \delta
- \tag{1}
- \mathbb{E}
- \sum_0^1
- \sum_{s{’}}{a}
- \forall
$$
\begin{aligned}
G_t&=R_{t+1}+R_{t+2}+R_{t+3}+\cdots+R_T \\
G_t&=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots=\sum_{k=0}^\infin \gamma^k R_{t+k+1}, 0≤\gamma≤1 \\
G_t &=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots \\
&=R_{t+1}+\gamma (R_{t+2}+\gamma R_{t+3}+ \cdots)\\
&=R_{t+1}+\gamma G_{t+1}
\end{aligned}
$$