import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD 1 # 载入数据 2 (x_train,y_train),(x_test,y_test) =
import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD
1 # 载入数据 2 (x_train,y_train),(x_test,y_test) = mnist.load_data() 3 # (60000,28,28) 4 print(‘x_shape:‘,x_train.shape) 5 # (60000) 6 print(‘y_shape:‘,y_train.shape) 7 # (60000,28,28)->(60000,784) 8 x_train = x_train.reshape(x_train.shape[0],-1)/255.0 9 x_test = x_test.reshape(x_test.shape[0],-1)/255.0 10 # 换one hot格式 11 y_train = np_utils.to_categorical(y_train,num_classes=10) 12 y_test = np_utils.to_categorical(y_test,num_classes=10) 13 14 # 创建模型,输入784个神经元,输出10个神经元 15 model = Sequential([ 16 Dense(units=10,input_dim=784,bias_initializer=‘one‘,activation=‘softmax‘) 17 ]) 18 19 # 定义优化器 20 sgd = SGD(lr=0.2) 21 22 # 定义优化器,loss function,训练过程中计算准确率 23 model.compile( 24 optimizer = sgd, 25 loss = ‘mse‘, 26 metrics=[‘accuracy‘], 27 ) 28 29 # 训练模型 30 model.fit(x_train,y_train,batch_size=64,epochs=5) 31 32 # 评估模型 33 loss,accuracy = model.evaluate(x_test,y_test) 34 35 print(‘\ntest loss‘,loss) 36 print(‘accuracy‘,accuracy) 37 38 # 保存模型 39 model.save(‘model.h5‘) # HDF5文件,pip install h5py