当前位置 : 主页 > 手机开发 > ROM >

10.模型保存

来源:互联网 收集:自由互联 发布时间:2021-06-10
import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD 1 # 载入数据 2 (x_train,y_train),(x_test,y_test) =
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
 1 # 载入数据
 2 (x_train,y_train),(x_test,y_test) = mnist.load_data()
 3 # (60000,28,28)
 4 print(x_shape:,x_train.shape)
 5 # (60000)
 6 print(y_shape:,y_train.shape)
 7 # (60000,28,28)->(60000,784)
 8 x_train = x_train.reshape(x_train.shape[0],-1)/255.0
 9 x_test = x_test.reshape(x_test.shape[0],-1)/255.0
10 # 换one hot格式
11 y_train = np_utils.to_categorical(y_train,num_classes=10)
12 y_test = np_utils.to_categorical(y_test,num_classes=10)
13 
14 # 创建模型,输入784个神经元,输出10个神经元
15 model = Sequential([
16         Dense(units=10,input_dim=784,bias_initializer=one,activation=softmax)
17     ])
18 
19 # 定义优化器
20 sgd = SGD(lr=0.2)
21 
22 # 定义优化器,loss function,训练过程中计算准确率
23 model.compile(
24     optimizer = sgd,
25     loss = mse,
26     metrics=[accuracy],
27 )
28 
29 # 训练模型
30 model.fit(x_train,y_train,batch_size=64,epochs=5)
31 
32 # 评估模型
33 loss,accuracy = model.evaluate(x_test,y_test)
34 
35 print(\ntest loss,loss)
36 print(accuracy,accuracy)
37 
38 # 保存模型
39 model.save(model.h5)   # HDF5文件,pip install h5py

分享图片

上一篇:函数的对象
下一篇:11.模型载入
网友评论