当前位置 : 主页 > 手机开发 > ROM >

11.模型载入

来源:互联网 收集:自由互联 发布时间:2021-06-10
1 import numpy as np 2 from keras.datasets import mnist 3 from keras.utils import np_utils 4 from keras.models import Sequential 5 from keras.layers import Dense 6 from keras.optimizers import SGD 7 from keras.models import load_model 1 # 载
1 import numpy as np
2 from keras.datasets import mnist
3 from keras.utils import np_utils
4 from keras.models import Sequential
5 from keras.layers import Dense
6 from keras.optimizers import SGD
7 from keras.models import load_model
 1 # 载入数据
 2 (x_train,y_train),(x_test,y_test) = mnist.load_data()
 3 # (60000,28,28)
 4 print(x_shape:,x_train.shape)
 5 # (60000)
 6 print(y_shape:,y_train.shape)
 7 # (60000,28,28)->(60000,784)
 8 x_train = x_train.reshape(x_train.shape[0],-1)/255.0
 9 x_test = x_test.reshape(x_test.shape[0],-1)/255.0
10 # 换one hot格式
11 y_train = np_utils.to_categorical(y_train,num_classes=10)
12 y_test = np_utils.to_categorical(y_test,num_classes=10)
13 
14 # 载入模型
15 model = load_model(model.h5)
16 
17 # 评估模型
18 loss,accuracy = model.evaluate(x_test,y_test)
19 
20 print(\ntest loss,loss)
21 print(accuracy,accuracy)

分享图片

# 训练模型
model.fit(x_train,y_train,batch_size=64,epochs=2)

# 评估模型
loss,accuracy = model.evaluate(x_test,y_test)

print(\ntest loss,loss)
print(accuracy,accuracy)

分享图片

# 保存参数,载入参数
model.save_weights(my_model_weights.h5)
model.load_weights(my_model_weights.h5)
# 保存网络结构,载入网络结构
from keras.models import model_from_json
json_string = model.to_json()
model = model_from_json(json_string)
print(json_string)

分享图片

上一篇:10.模型保存
下一篇:9.RNN应用
网友评论