1 import numpy as np 2 from keras.datasets import mnist 3 from keras.utils import np_utils 4 from keras.models import Sequential 5 from keras.layers import Dense 6 from keras.optimizers import SGD 7 from keras.models import load_model 1 # 载
1 import numpy as np 2 from keras.datasets import mnist 3 from keras.utils import np_utils 4 from keras.models import Sequential 5 from keras.layers import Dense 6 from keras.optimizers import SGD 7 from keras.models import load_model
1 # 载入数据 2 (x_train,y_train),(x_test,y_test) = mnist.load_data() 3 # (60000,28,28) 4 print(‘x_shape:‘,x_train.shape) 5 # (60000) 6 print(‘y_shape:‘,y_train.shape) 7 # (60000,28,28)->(60000,784) 8 x_train = x_train.reshape(x_train.shape[0],-1)/255.0 9 x_test = x_test.reshape(x_test.shape[0],-1)/255.0 10 # 换one hot格式 11 y_train = np_utils.to_categorical(y_train,num_classes=10) 12 y_test = np_utils.to_categorical(y_test,num_classes=10) 13 14 # 载入模型 15 model = load_model(‘model.h5‘) 16 17 # 评估模型 18 loss,accuracy = model.evaluate(x_test,y_test) 19 20 print(‘\ntest loss‘,loss) 21 print(‘accuracy‘,accuracy)
# 训练模型 model.fit(x_train,y_train,batch_size=64,epochs=2) # 评估模型 loss,accuracy = model.evaluate(x_test,y_test) print(‘\ntest loss‘,loss) print(‘accuracy‘,accuracy)
# 保存参数,载入参数 model.save_weights(‘my_model_weights.h5‘) model.load_weights(‘my_model_weights.h5‘) # 保存网络结构,载入网络结构 from keras.models import model_from_json json_string = model.to_json() model = model_from_json(json_string)
print(json_string)