我在OpenCV android 2.4.11的例子下工作,它使用相机检测面部. 我没有在找到的脸上画一个矩形,而是试图在脸上放一个面具(png图像). 但是为了在脸上显示图像,png图像带有透明度的黑色背景
我没有在找到的脸上画一个矩形,而是试图在脸上放一个面具(png图像).
但是为了在脸上显示图像,png图像带有透明度的黑色背景.
FdActivity.java
public void onCameraViewStarted(int width, int height) { mGray = new Mat(); mRgba = new Mat(); //Load my mask png Bitmap image = BitmapFactory.decodeResource(getResources(), R.drawable.mask_1); mask = new Mat(); Utils.bitmapToMat(image, mask); } public Mat onCameraFrame(CvCameraViewFrame inputFrame) { mRgba = inputFrame.rgba(); mGray = inputFrame.gray(); if (mAbsoluteFaceSize == 0) { int height = mGray.rows(); if (Math.round(height * mRelativeFaceSize) > 0) { mAbsoluteFaceSize = Math.round(height * mRelativeFaceSize); } mNativeDetector.setMinFaceSize(mAbsoluteFaceSize); } MatOfRect faces = new MatOfRect(); if (mDetectorType == JAVA_DETECTOR) { if (mJavaDetector != null) mJavaDetector.detectMultiScale(mGray, faces, 1.1, 2, 2, new Size(mAbsoluteFaceSize, mAbsoluteFaceSize), new Size()); } else if (mDetectorType == NATIVE_DETECTOR) { if (mNativeDetector != null) mNativeDetector.detect(mGray, faces); } else { Log.e(TAG, "Detection method is not selected!"); } Rect[] facesArray = faces.toArray(); for (int i = 0; i < facesArray.length; i++) { overlayImage(mRgba, mask, facesArray[i]); } return mRgba; } public Mat overlayImage(Mat background, Mat foregroundMask, Rect faceRect) { Mat mask = new Mat(); Imgproc.resize(this.mask, mask, faceRect.size()); Mat source = new Mat(); Imgproc.resize(foregroundMask, source, background.size()); mask.copyTo( background.submat( new Rect((int) faceRect.tl().x, (int) faceRect.tl().y, mask.cols(), mask.rows())) ); source.release(); mask.release(); return background; }注意:我将解释一般原理并在Python中给出一个示例实现,因为我没有设置Android开发环境.将它移植到Java应该相当简单.您可以将代码作为单独的答案发布.
您需要执行与addWeighted操作类似的操作,即操作
但是,在您的情况下,α需要是一个矩阵(即我们需要每个像素不同的混合系数).
样本图像
让我们使用一些示例图像来说明这一点.我们可以使用Lena图像作为样本面:
此图像作为透明覆盖:
这个图像作为没有透明度的叠加层:
混合矩阵
要获得alpha矩阵,我们可以使用阈值处理确定前景(叠加)和背景(面部)遮罩,或者如果可用,则使用输入图像中的alpha通道.
在值为0.0 .. 1.0的浮点图像上执行此操作非常有用.然后我们可以将两个面具之间的关系表达为
foreground_mask = 1.0 - background_mask
即加在一起的两个掩模导致所有掩模.
对于RGBA格式的叠加图像,我们得到以下前景和背景蒙版:
当我们在RGB格式的情况下使用阈值,侵蚀和模糊时,我们得到以下前景和背景蒙版:
加权和
现在我们可以计算两个加权部分:
foreground_part = overlay_image * foreground_mask background_part = face_image * background_mask
对于RGBA覆盖,前景和背景部分如下所示:
对于RGB叠加,前景和背景部分看起来如下:
最后将它们组合在一起,并将图像转换回0-255范围内的8位整数.
操作结果如下(分别为RGBA和RGB叠加):
代码示例 – RGB叠加
import numpy as np import cv2 # ============================================================================== def blend_non_transparent(face_img, overlay_img): # Let's find a mask covering all the non-black (foreground) pixels # NB: We need to do this on grayscale version of the image gray_overlay = cv2.cvtColor(overlay_img, cv2.COLOR_BGR2GRAY) overlay_mask = cv2.threshold(gray_overlay, 1, 255, cv2.THRESH_BINARY)[1] # Let's shrink and blur it a little to make the transitions smoother... overlay_mask = cv2.erode(overlay_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))) overlay_mask = cv2.blur(overlay_mask, (3, 3)) # And the inverse mask, that covers all the black (background) pixels background_mask = 255 - overlay_mask # Turn the masks into three channel, so we can use them as weights overlay_mask = cv2.cvtColor(overlay_mask, cv2.COLOR_GRAY2BGR) background_mask = cv2.cvtColor(background_mask, cv2.COLOR_GRAY2BGR) # Create a masked out face image, and masked out overlay # We convert the images to floating point in range 0.0 - 1.0 face_part = (face_img * (1 / 255.0)) * (background_mask * (1 / 255.0)) overlay_part = (overlay_img * (1 / 255.0)) * (overlay_mask * (1 / 255.0)) # And finally just add them together, and rescale it back to an 8bit integer image return np.uint8(cv2.addWeighted(face_part, 255.0, overlay_part, 255.0, 0.0)) # ============================================================================== # We load the images face_img = cv2.imread("lena.png", -1) overlay_img = cv2.imread("overlay.png", -1) result_1 = blend_non_transparent(face_img, overlay_img) cv2.imwrite("merged.png", result_1)
代码示例 – RGBA叠加
import numpy as np import cv2 # ============================================================================== def blend_transparent(face_img, overlay_t_img): # Split out the transparency mask from the colour info overlay_img = overlay_t_img[:,:,:3] # Grab the BRG planes overlay_mask = overlay_t_img[:,:,3:] # And the alpha plane # Again calculate the inverse mask background_mask = 255 - overlay_mask # Turn the masks into three channel, so we can use them as weights overlay_mask = cv2.cvtColor(overlay_mask, cv2.COLOR_GRAY2BGR) background_mask = cv2.cvtColor(background_mask, cv2.COLOR_GRAY2BGR) # Create a masked out face image, and masked out overlay # We convert the images to floating point in range 0.0 - 1.0 face_part = (face_img * (1 / 255.0)) * (background_mask * (1 / 255.0)) overlay_part = (overlay_img * (1 / 255.0)) * (overlay_mask * (1 / 255.0)) # And finally just add them together, and rescale it back to an 8bit integer image return np.uint8(cv2.addWeighted(face_part, 255.0, overlay_part, 255.0, 0.0)) # ============================================================================== # We load the images face_img = cv2.imread("lena.png", -1) overlay_t_img = cv2.imread("overlay_transparent.png", -1) # Load with transparency result_2 = blend_transparent(face_img, overlay_t_img) cv2.imwrite("merged_transparent.png", result_2)