当前位置 : 主页 > 编程语言 > python >

dynamic programming_矩阵链乘法(matrix_chain_order)_python

来源:互联网 收集:自由互联 发布时间:2022-06-14
文章目录 ​​theory​​ ​​specific examples:​​ ​​Construct the optimal solution​​ ​​python:​​ theory 记住,矩阵子链 链内各个矩阵相乘的结果矩阵的规模可以仅从该子链的第一个矩阵


文章目录

  • ​​theory​​
  • ​​specific examples:​​
  • ​​Construct the optimal solution​​
  • ​​python:​​

theory

dynamic programming_矩阵链乘法(matrix_chain_order)_python_python
dynamic programming_矩阵链乘法(matrix_chain_order)_python_python_02
dynamic programming_矩阵链乘法(matrix_chain_order)_python_ide_03

dynamic programming_矩阵链乘法(matrix_chain_order)_python_ide_04
记住,矩阵子链dynamic programming_矩阵链乘法(matrix_chain_order)_python_矩阵相乘_05链内各个矩阵相乘的结果矩阵的规模可以仅从该子链的第一个矩阵dynamic programming_矩阵链乘法(matrix_chain_order)_python_ide_06的行数dynamic programming_矩阵链乘法(matrix_chain_order)_python_python_07和最后一个矩阵dynamic programming_矩阵链乘法(matrix_chain_order)_python_python_08的列数dynamic programming_矩阵链乘法(matrix_chain_order)_python_矩阵相乘_09有关
即,结果矩阵的规模为dynamic programming_矩阵链乘法(matrix_chain_order)_python_矩阵相乘_10
这是理解dynamic programming_矩阵链乘法(matrix_chain_order)_python_python_11中为什么是dynamic programming_矩阵链乘法(matrix_chain_order)_python_ide_12的基础
dynamic programming_矩阵链乘法(matrix_chain_order)_python_python_13
m[2,2]相当于单个矩阵构成的矩阵链(k=i=2),行数为dynamic programming_矩阵链乘法(matrix_chain_order)_python_python_14,列数为dynamic programming_矩阵链乘法(matrix_chain_order)_python_python_15,则,规格为dynamic programming_矩阵链乘法(matrix_chain_order)_python_python_16

specific examples:

dynamic programming_矩阵链乘法(matrix_chain_order)_python_ide_17
dynamic programming_矩阵链乘法(matrix_chain_order)_python_ide_18
dynamic programming_矩阵链乘法(matrix_chain_order)_python_矩阵相乘_19

dynamic programming_矩阵链乘法(matrix_chain_order)_python_矩阵相乘_20

dynamic programming_矩阵链乘法(matrix_chain_order)_python_python_21

Construct the optimal solution

the parentheses solution:
dynamic programming_矩阵链乘法(matrix_chain_order)_python_python_22

python:

import math
def matrix_chain_order(list_p):
"""[summary]

Args:
list_p ([type]): [description]

Returns:
[type]: [description]
"""
n = len(list_p)-1
''' we could think that the table_min_costs contains the optimal cost values of the different subproblem(sub_matrix chain) scales
(from bottom to top to solve the problem)
'''
# the table to save the lowest costs to multiple the matrix chain
table_min_costs = [[0 for i in range(0, n+1)]
for j in range(0, n+1)] # (n+1)*(n+1)
# the table_save_partition save the the optimal partition point:make the multiplication cost lowest each scale cases
table_save_partition = [
[0 for i in range(0, n+1)] for j in range(0, n+1)] # (n)*(n)
''' the length of the sub_matrix chain is 1 cases could be centralized process:assign them as 0 in the table_min_costs '''
for i in range(1, n+1):
table_min_costs[i][i] = 0
''' the essential part of the algorithm: '''
# length is the chain length(traverse the all kinds of sub matrix chains cases(length>1))
for length in range(2, n+1):
''' each specific length cases have different partition schemes:
traverse all these divide cases:'''
for start_i in range(1, n-length+2): # the start_i is the index of each sub_matrix chain
# make the j-i+1==l(namely ,the length of sub_matrix chain)
end_i = start_i+length-1
# initial the costs as infinite value:
table_min_costs[start_i][end_i] = math.inf
"""
# focus on the each sepecified sub_matrix chain
# the following loop will test(run) j-i times:to find the optimal split point:
# the index to_opt_partition is the index of the optimal split point(the matrix to_opt_partition matrix will be belong to the former subproble(sub_matrix chain))
"""
for to_opt_partition in range(start_i, end_i):
''' the to_opt_partition >=start_i>=1 '''
to_lowest_cost = table_min_costs[start_i][to_opt_partition] + table_min_costs[to_opt_partition+1][end_i] + \
list_p[start_i-1]*list_p[to_opt_partition]*list_p[end_i]
if to_lowest_cost < table_min_costs[start_i][end_i]:
table_min_costs[start_i][end_i] = to_lowest_cost

table_save_partition[start_i][end_i] = to_opt_partition

return table_min_costs, table_save_partition


def print_optimal_parentheses(s, i, j):
"""
matrix_index=1
Args:
s ([list]): [table_save_partition(optimal)]
i ([int]): [start_i index of the subproblem]
j ([int]): [end_i index of the subproblem]
"""
""" the simplest case (the sub_matrix chain length is 1)
the case as the recursive exit:"""
if i == j:
print("A"+str(i), end="")
else:
print("(", end="")
print_optimal_parentheses(s, i, s[i][j])
print_optimal_parentheses(s, s[i][j]+1, j)
print(")", end="")


def test(list_p):
table_min_costs, table_save_partition = matrix_chain_order(list_p)
print_optimal_parentheses(table_save_partition, 1, len(list_p)-1)


list_p = [30, 35, 15, 5, 10, 20, 25]


test(list_p)


上一篇:python_kmp_串的模式匹配算法
下一篇:没有了
网友评论