当前位置 : 主页 > 编程语言 > python >

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文

来源:互联网 收集:自由互联 发布时间:2022-06-15
1 简介 In this paper, a novel image fusion method for remote sensing applications is proposed. In order to estimate the primitive detail map, the band coefficients of multispectral images are computed using least squares method. To refine



1 简介

In this paper, a novel image fusion method for remote sensing applications is proposed. In order to estimate the primitive detail map, the band coefficients of multispectral images are computed using least squares method. To refine the detail map and better image fusion, an adaptive method is proposed to compute the weights of linear combinations of panchromatic (Pan) and multispectral (MS) gradients. The injected weights are calculated using particle swarm optimization (PSO). Two data sets obtained by WorldView-3 and QuickBird satellites are employed for testing the assessment and comparing with state-of-art methods.

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_参考文献

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_参考文献_02编辑

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_无人机_03

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_参考文献_04编辑

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_sed_05

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_sed_06编辑

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_无人机_07

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_无人机_08编辑

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_sed_09

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_参考文献_10编辑

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_sed_11

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_sed_12编辑

2 部分代码

%% This code is used to estimate the weights of the MultiSpectral (MS) bands based on Adaptive IHS (AIHS) method.
%% References
% [1] S. Rahmani, M. Strait, D. Merkurjev, M. Moeller, and T. Wittman,
% M - Low Resolution MS (LRMS) image to size of PANchromatic (PAN) image
% P - Original PAN image
%% In the outputs you can find the estimated weight for each MS band
% findalph - Spectral weights
function findalph = impGradDes(M, P)
[n, m, d] = size(M);
%% Initializing the optimal weight vector
findalph = ones(d,1);
%% Optimization process
for i=1:d
for j=1:d
A(i,j) = sum(sum(M(:,:,i).*M(:,:,j)));
end
B(i,1) = sum(sum(P.*M(:,:,i)));
end
tau = 5;
iter = 150000;
gamma1 = 1/200000;
gamma2 = 1;
inv = (eye(d) + 2*tau*gamma1*A)^(-1);
for i = 1:iter
findalph = inv * (findalph+2*tau*max(-findalph,0)+2*tau*gamma1*B);
end
%% EOF

3 仿真结果

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_参考文献_13

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_参考文献_14编辑

4 参考文献

A. Azarang and H. Ghassemian, "An adaptive multispectral image fusion using particle swarm optimization," 2017 Iranian Conference on Electrical Engineering (ICEE), 2017, pp. 1708-1712, doi: 10.1109/IranianCEE.2017.7985325.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_参考文献_15

【图像融合】一种基于粒子群优化的自适应多光谱图像融合附matlab代码及论文_参考文献_16编辑

网友评论