当前位置 : 主页 > 编程语言 > python >

python文本分类

来源:互联网 收集:自由互联 发布时间:2022-06-15
前面博客里面从谣言百科中爬取到了所有类别(10类)的新闻并以文本的形式存储。 现在对这些数据进行分类,上代码: # -*- coding: utf-8 -*- """ Created on Fri Mar 9 14:18:49 2018 @author: Administ

前面博客里面从谣言百科中爬取到了所有类别(10类)的新闻并以文本的形式存储。

现在对这些数据进行分类,上代码:

# -*- coding: utf-8 -*-
"""
Created on Fri Mar 9 14:18:49 2018

@author: Administrator
"""

import os
import time
import random
import jieba
import nltk
import sklearn
from sklearn.naive_bayes import MultinomialNB
import numpy as np
import pylab as pl
import matplotlib.pyplot as plt


def MakeWordsSet(words_file):
words_set = set()
with open(words_file, 'r', encoding='UTF-8') as fp:
for line in fp.readlines():
word = line.strip()
if len(word)>0 and word not in words_set: # 去重
words_set.add(word)
return words_set

def TextProcessing(folder_path, test_size=0.2):
folder_list = os.listdir(folder_path)#获取文件夹下所有子文件夹
data_list = []#获取文本数据
class_list = []#获取类别数据

# 所有类别进行循环
for folder in folder_list:
new_folder_path = os.path.join(folder_path, folder)#获得子文件夹路径
files = os.listdir(new_folder_path)#获得子文件夹下所有文件
# 类内循环
j = 0
for file in files:
if j > 410: # 每类text样本数最多不超过这个
break
with open(os.path.join(new_folder_path, file), 'r', encoding='UTF-8') as fp:
raw = fp.read()
# print raw
## --------------------------------------------------------------------------------
## jieba分词

word_cut = jieba.cut(raw, cut_all=False) # 精确模式,返回的结构是一个可迭代的genertor
word_list = list(word_cut) # genertor转化为list,每个词unicode格式

## --------------------------------------------------------------------------------
data_list.append(word_list)
class_list.append(folder)
j += 1

## 划分训练集和测试集
# train_data_list, test_data_list, train_class_list, test_class_list = sklearn.cross_validation.train_test_split(data_list, class_list, test_size=test_size)
data_class_list = list(zip(data_list, class_list))#zip函数:接受2个序列作为参数,返回tuple列表
random.shuffle(data_class_list)#shuffle() 将序列的所有元素随机排序。
index = int(len(data_class_list)*test_size)+1#数据总量*0.2来划分训练集和测试集
train_list = data_class_list[index:]#训练集为后0.8的数据
test_list = data_class_list[:index]#测试集为前0.2的数据
train_data_list, train_class_list = zip(*train_list)#训练数据集
test_data_list, test_class_list = zip(*test_list)#测试数据集

# 统计词频放入all_words_dict
all_words_dict = {}
for word_list in train_data_list:
for word in word_list:
if word in all_words_dict:
all_words_dict[word] += 1
else:
all_words_dict[word] = 1
# key函数利用词频进行降序排序
all_words_tuple_list = sorted(all_words_dict.items(), key=lambda f:f[1], reverse=True) # 内建函数sorted参数需为list
all_words_list = list(zip(*all_words_tuple_list))[0]

return all_words_list, train_data_list, test_data_list, train_class_list, test_class_list


def words_dict(all_words_list, deleteN, stopwords_set=set()):# 选取特征词:不全为数字,不是停留子,长度在1到5之间

feature_words = []
n = 1
for t in range(deleteN, len(all_words_list), 1):
if n > 1000: # feature_words的维度1000
break
# print all_words_list[t]
if not all_words_list[t].isdigit() and all_words_list[t] not in stopwords_set and 1<len(all_words_list[t])<5:# isdigit() 方法检测字符串是否只由数字组成。
feature_words.append(all_words_list[t])
n += 1
return feature_words


def TextFeatures(train_data_list, test_data_list, feature_words, flag='nltk'):
def text_features(text, feature_words):
text_words = set(text)
## -----------------------------------------------------------------------------------
if flag == 'nltk':
## nltk特征 dict
features = {word:1 if word in text_words else 0 for word in feature_words}
elif flag == 'sklearn':
## sklearn特征 list
features = [1 if word in text_words else 0 for word in feature_words]
else:
features = []
## -----------------------------------------------------------------------------------
return features
train_feature_list = [text_features(text, feature_words) for text in train_data_list]
test_feature_list = [text_features(text, feature_words) for text in test_data_list]
return train_feature_list, test_feature_list


def TextClassifier(train_feature_list, test_feature_list, train_class_list, test_class_list, flag='nltk'):
## -----------------------------------------------------------------------------------
if flag == 'nltk':
## nltk分类器
train_flist = zip(train_feature_list, train_class_list)
test_flist = zip(test_feature_list, test_class_list)
classifier = nltk.classify.NaiveBayesClassifier.train(train_flist)

test_accuracy = nltk.classify.accuracy(classifier, test_flist)
elif flag == 'sklearn':
## sklearn分类器
classifier = MultinomialNB().fit(train_feature_list, train_class_list)

test_accuracy = classifier.score(test_feature_list, test_class_list)
else:
test_accuracy = []
return test_accuracy


if __name__ == '__main__':

print("start")

## 文本预处理
folder_path = 'F:\\test\\demo'
all_words_list, train_data_list, test_data_list, train_class_list, test_class_list = TextProcessing(folder_path, test_size=0.2)

# 生成stopwords_set
stopwords_file = 'F:\\test\\stopword.txt'
stopwords_set = MakeWordsSet(stopwords_file)

## 文本特征提取和分类
# flag = 'nltk'
flag = 'sklearn'
deleteNs = range(0, 1000, 20)
test_accuracy_list = []
for deleteN in deleteNs:
# feature_words = words_dict(all_words_list, deleteN)
feature_words = words_dict(all_words_list, deleteN, stopwords_set)#特征词;
train_feature_list, test_feature_list = TextFeatures(train_data_list, test_data_list, feature_words, flag)#获得训练集以及测试数据集;
test_accuracy = TextClassifier(train_feature_list, test_feature_list, train_class_list, test_class_list, flag)
test_accuracy_list.append(test_accuracy)
print(test_accuracy_list)

# 结果评价
plt.figure()
plt.plot(deleteNs, test_accuracy_list)
plt.title('Relationship of deleteNs and test_accuracy')
plt.xlabel('deleteNs')
plt.ylabel('test_accuracy')
plt.savefig('result.png')

print("finished")


运行完分类完成!

上一篇:文本处理之Python词频统计
下一篇:没有了
网友评论