当前位置 : 主页 > 编程语言 > python >

【DELM预测】基于灰狼算法改进深度学习极限学习机实现数据预测附matlab代码

来源:互联网 收集:自由互联 发布时间:2022-06-15
1 简介 优势特性来弥补极限学习机的弱势特性从而改善极限学习机的性能.为了进一步提升DELM预测精度,本文采用麻雀搜索算法进一步优化DELM超参数,仿真结果表明,改进算法的预测精

1 简介

优势特性来弥补极限学习机的弱势特性从而改善极限学习机的性能.为了进一步提升DELM预测精度,本文采用麻雀搜索算法进一步优化DELM超参数,仿真结果表明,改进算法的预测精度更高。

【DELM预测】基于灰狼算法改进深度学习极限学习机实现数据预测附matlab代码_参考文献

【DELM预测】基于灰狼算法改进深度学习极限学习机实现数据预测附matlab代码_参考文献_02

【DELM预测】基于灰狼算法改进深度学习极限学习机实现数据预测附matlab代码_d3_03

【DELM预测】基于灰狼算法改进深度学习极限学习机实现数据预测附matlab代码_matlab代码_04

【DELM预测】基于灰狼算法改进深度学习极限学习机实现数据预测附matlab代码_matlab代码_05

2 部分代码

%
%___________________________________________________________________%
% Grey Wolf Optimizer
function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)
% initialize alpha, beta, and delta_pos
Alpha_pos=zeros(1,dim);
Alpha_score=inf; %change this to -inf for maximization problems
Beta_pos=zeros(1,dim);
Beta_score=inf; %change this to -inf for maximization problems
Delta_pos=zeros(1,dim);
Delta_score=inf; %change this to -inf for maximization problems
%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);
Convergence_curve=zeros(1,Max_iter);
l=0;% Loop counter
% Main loop
while l<Max_iter
for i=1:size(Positions,1)
% Return back the search agents that go beyond the boundaries of the search space
Flag4ub=Positions(i,:)>ub;
Flag4lb=Positions(i,:)<lb;
Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
% Calculate objective function for each search agent
fitness=fobj(Positions(i,:));
% Update Alpha, Beta, and Delta
if fitness<Alpha_score
Alpha_score=fitness; % Update alpha
Alpha_pos=Positions(i,:);
end
if fitness>Alpha_score && fitness<Beta_score
Beta_score=fitness; % Update beta
Beta_pos=Positions(i,:);
end
if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score
Delta_score=fitness; % Update delta
Delta_pos=Positions(i,:);
end
end
a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0
% Update the Position of search agents including omegas
for i=1:size(Positions,1)
for j=1:size(Positions,2)
r1=rand(); % r1 is a random number in [0,1]
r2=rand(); % r2 is a random number in [0,1]
A1=2*a*r1-a; % Equation (3.3)
C1=2*r2; % Equation (3.4)
D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1
r1=rand();
r2=rand();
A2=2*a*r1-a; % Equation (3.3)
C2=2*r2; % Equation (3.4)
D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2
r1=rand();
r2=rand();
A3=2*a*r1-a; % Equation (3.3)
C3=2*r2; % Equation (3.4)
D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3
Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)
end
end
l=l+1;
Convergence_curve(l)=Alpha_score;
end

3 仿真结果

【DELM预测】基于灰狼算法改进深度学习极限学习机实现数据预测附matlab代码_matlab代码_06

【DELM预测】基于灰狼算法改进深度学习极限学习机实现数据预测附matlab代码_d3_07

【DELM预测】基于灰狼算法改进深度学习极限学习机实现数据预测附matlab代码_matlab代码_08

4 参考文献


博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

【DELM预测】基于灰狼算法改进深度学习极限学习机实现数据预测附matlab代码_matlab代码_09



上一篇:在 Python 中使用 Pool 进行多处理
下一篇:没有了
网友评论