当前位置 : 主页 > 编程语言 > 其它开发 >

leetcode 221. Maximal Square 最大正方形(中等)

来源:互联网 收集:自由互联 发布时间:2022-06-21
使用动态规划来解决,使用dp[i][j]表示以(i,j)为右下角,且只饮食1的正方形的边长最大值。如果我们能计算出所有dp[i][j]的值,那么其中的最大值即为矩阵中只饮食1的下方形的边长最大
使用动态规划来解决,使用dp[i][j]表示以(i,j)为右下角,且只饮食1的正方形的边长最大值。如果我们能计算出所有dp[i][j]的值,那么其中的最大值即为矩阵中只饮食1的下方形的边长最大值,其平方即为最大下方形的面积。 一、题目大意

标签: 动态规划

https://leetcode.cn/problems/maximal-square

在一个由 '0' 和 '1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。
示例 1:

输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4

示例 2:

输入:matrix = [["0","1"],["1","0"]]
输出:1

示例 3:

输入:matrix = [["0"]]
输出:0

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 300
  • matrix[i][j] 为 '0' 或 '1'
二、解题思路

使用动态规划来解决,使用dp[i][j]表示以(i,j)为右下角,且只饮食1的正方形的边长最大值。如果我们能计算出所有dp[i][j]的值,那么其中的最大值即为矩阵中只饮食1的下方形的边长最大值,其平方即为最大下方形的面积。
如何计算dp中每个元素的值:
若该位置的值为0,则dp[i][j]=0,因为当前位置不可能在由1组成的正方形中
若该位置的值为1,则dp[i][j]的值由其上方、左方和左上方的三个相邻位置的dp值决定,具体就是当前位置的元素值等于三个相邻的元素中的最小值加1,其状态方程如下:
dp[i][j] = min(dp[i-1][j], dp[i-1][j-1], dp[i][j-1]) + 1

三、解题方法 3.1 Java实现
public class Solution {
    public int maximalSquare(char[][] matrix) {
        int maxSize = 0;
        int rows = matrix.length;
        int columns = matrix[0].length;
        int[][] dp = new int[rows][columns];
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < columns; j++) {
                if (matrix[i][j] == '1') {
                    if (i == 0 || j == 0) {
                        dp[i][j] = 1;
                    } else {
                        dp[i][j] = Math.min(dp[i-1][j], dp[i-1][j-1]);
                        dp[i][j] = Math.min(dp[i][j-1], dp[i][j]) + 1;
                    }
                    maxSize = Math.max(maxSize, dp[i][j]);
                }
            }
        }
        return maxSize * maxSize;
    }
}
四、总结小记
  • 2022/6/20 倒计时14天
上一篇:Spring框架
下一篇:没有了
网友评论