多进程可以有效利用服务器多核CPU的计算资源,加速运行效率,在python中,通过内置模块multiprocessing来进行多进程编程。 子进程通过Process类来设置,示例如下 from multiprocessing impor
多进程可以有效利用服务器多核CPU的计算资源,加速运行效率,在python中,通过内置模块multiprocessing来进行多进程编程。
子进程通过Process类来设置,示例如下
import subprocess
import shlex
def cal_seqs(fq):
print('calculate fastq sequences')
cnt = 0
with open(fq) as f:
for line in f:
cnt += 1
print('fastq sequences : {}'.format(cnt / 4))
def fastqc(fq):
cmd = 'fastqc -t 10 {}'.format(fq)
cmd_args = shlex.split(cmd)
p = subprocess.Popen(cmd_args, stdout = subprocess.PIPE)
p.stdout.read()
if __name__ == '__main__':
fq = 'test.fq'
p = Process(target = fastqc, args = (fq, ))
p.start()
cal_seqs(fq)
print('Finish calculate fastq sequences')
上述代码启动了一个子进程来运行fastqc, 主进程则执行计算fastq文件的序列数,运行上述代码,你会看到类似如下的输出
calculate fastq sequencesfastq sequences : 100000
Finish calculate fastq sequences
Started analysis of test.fq
Approx 5% complete for test.fq
Approx 10% complete for test.fq
Approx 15% complete for test.fq
Approx 20% complete for test.fq
主进程中的行数计算先执行完毕,子进程后执行完毕, 说明子进程是非阻塞的。在主进程中启动了子进程后,主进程不管子进程是否运行结束,接着往下执行计算行数的结果,这就是非阻塞。如果需要等子进程执行完毕后,主进程再直接执行,也就是阻塞式的运行,需要join函数来进行阻塞,上述代码修改如下
import subprocess
import shlex
def cal_seqs(fq):
print('calculate fastq sequences')
cnt = 0
with open(fq) as f:
for line in f:
cnt += 1
print('fastq sequences : {}'.format(cnt / 4))
def fastqc(fq):
cmd = 'fastqc -t 10 {}'.format(fq)
cmd_args = shlex.split(cmd)
p = subprocess.Popen(cmd_args, stdout = subprocess.PIPE)
p.stdout.read()
if __name__ == '__main__':
fq = 'test.fq'
p = Process(target = fastqc, args = (fq, ))
p.start()
p.join()
cal_seqs(fq)
print('Finish calculate fastq sequences')
再次运行,可以看到如下输出
Started analysis of test.fqApprox 5% complete for test.fq
Approx 10% complete for test.fq
...
Approx 95% complete for test.fq
Approx 100% complete for test.fq
calculate fastq sequences
fastq sequences : 100000
Finish calculate fastq sequences
join的作用就是阻塞子程序,等待子进程执行完毕之后,主进程才可以接着往下执行。如果只是需要执行某些程序,而且下文中也不依赖其结果,可以选择非阻塞式的运行,如果下文需要依赖其结果,就需要阻塞式的运行了,应该根据实际情况,灵活进行选择。
对于多个样本的重复处理,可以用多进程达到并行的目的,代码示例如下
process_list = []samples = ['control1', 'control2', 'control3', 'case1', 'case2', 'case3']
for sample in sample:
fq = '{}.fq'.format(sample)
p = Process(target = fastqc, args = (sample, ))
p.start()
process_list.append(p)
# 根据需要选择是否阻塞
for p in process_list:
p.join()
上述代码有一个问题,会一次性将所有的样本都并行,在实际开发中,我们需要结合计算资源来控制最大的并行数,此时可以使用进程池Pool类,可以方便的指定最大进程数,示例如下
p = Pool(3)process_list = []
samples = ['control1', 'control2', 'control3', 'case1', 'case2', 'case3']
for sample in sample:
fq = '{}.fq'.format(sample)
p.append_async(target = fastqc, args = (sample, ))
p.close()
p.join()
上述代码还可以用map方法进行改写,更加简便,改写之后的完整代码如下
import subprocess
import shlex
def fastqc(fq):
cmd = 'fastqc -t 10 {}'.format(fq)
cmd_args = shlex.split(cmd)
p = subprocess.Popen(cmd_args, stdout = subprocess.PIPE)
p.stdout.read()
if __name__ == '__main__':
samples = ['control1.fq', 'control2.fq', 'control3.fq', 'case1.fq', 'case2.fq', 'case3.fq']
with Pool(3) as p:
samples = ['control1.fq', 'control2.fq', 'control3.fq', 'case1.fq', 'case2.fq', 'case3.fq']
p.map(fastqc, samples)
print('Finish')
以上就是python多进程的基本用法,除此以外,python还支持进程间通信以及共享变量,更高级的用法请查看官方的API文档。
·end·
一个只分享干货的
生信公众号