一TensorFlow打印向量值 当直接打印tf变量里的内容,只能输出维度,无法直接查看结果时—— 方法一: import tensorflow as tfx = tf.constant(1)with tf.Session() as sess:print(sess.run(x)) 方法二: import
当直接打印 tf 变量里的内容,只能输出维度,无法直接查看结果时——
方法一:
import tensorflow as tf
x = tf.constant(1)
with tf.Session() as sess:
print(sess.run(x))
方法二:
import tensorflow as tf
x = tf.constant(1)
sess = tf.InteractiveSession()
print(x.eval() )
二 tf.sequence_mask() 函数
lengths
整数张量,其所有值 <= maxlen。maxlen
标量整数张量,返回张量的最后一维的大小。默认值为lengths
中的最大值。dtype
结果张量的输出类型。name
操作的名称。
import tensorflow as tf
length = 3
seq_mask = tf.sequence_mask(length)
seq_mask
Out[6]: <tf.Tensor 'SequenceMask/Less:0' shape=(?,) dtype=bool>
tf.InteractiveSession()
print(seq_mask.eval())
[ True True True]
seq_mask = tf.sequence_mask(lengths=length)
print(seq_mask.eval())
[ True True True]
max_mask = tf.sequence_mask(lengths=length, maxlen=5)
max_mask
Out[12]: <tf.Tensor 'SequenceMask_2/Less:0' shape=(5,) dtype=bool>
max_mask.eval()
Out[13]: array([ True, True, True, False, False])
可以看到 长度被扩展了。
情况2:传入一维列表,根据一维列表的个数 shapeembed_dim = [2, 3, 4]
embed_mask = tf.sequence_mask(lengths=embed_dim)
embed_mask
Out[16]: <tf.Tensor 'SequenceMask_3/Less:0' shape=(3, ?) dtype=bool>
embed_mask.eval()
Out[17]:
array([[ True, True, False, False],
[ True, True, True, False],
[ True, True, True, True]])
max_embed_mask = tf.sequence_mask(lengths=embed_dim, maxlen=6)
max_embed_mask
Out[19]: <tf.Tensor 'SequenceMask_4/Less:0' shape=(3, 6) dtype=bool>
max_embed_mask.eval()
Out[20]:
array([[ True, True, False, False, False, False],
[ True, True, True, False, False, False],
[ True, True, True, True, False, False]])
可以看到修改后的 array 的维度是根据 length_list 的 shape 来变化的,即为 3
如果列表元素过长——
batch_data = [4, 3, 5, 6]
batch_seq = tf.sequence_mask(lengths=batch_data)
batch_seq
Out[72]: <tf.Tensor 'SequenceMask_17/Less:0' shape=(4, ?) dtype=bool>
batch_seq.eval()
Out[73]:
array([[ True, True, True, True, False, False],
[ True, True, True, False, False, False],
[ True, True, True, True, True, False],
[ True, True, True, True, True, True]])
max_batch_mask = tf.sequence_mask(lengths=batch_data, maxlen=7)
max_batch_mask
Out[75]: <tf.Tensor 'SequenceMask_18/Less:0' shape=(4, 7) dtype=bool>
max_batch_mask.eval()
Out[76]:
array([[ True, True, True, True, False, False, False],
[ True, True, True, False, False, False, False],
[ True, True, True, True, True, False, False],
[ True, True, True, True, True, True, False]])
可以看到修改后的 array 的维度是根据 batch_data 的 shape 来变化的,即为 4
结论:一维列表根据列表的维度的最后一个维度进行扩充
情况3:length 传入的是多维列表length_list = [ [2, 3, 4], [3, 4, 5]]
list_mask = tf.sequence_mask(lengths=length_list)
list_mask
Out[64]: <tf.Tensor 'SequenceMask_15/Less:0' shape=(2, 3, ?) dtype=bool>
list_mask.eval()
Out[65]:
array([[[ True, True, False, False, False],
[ True, True, True, False, False],
[ True, True, True, True, False]],
[[ True, True, True, False, False],
[ True, True, True, True, False],
[ True, True, True, True, True]]])
max_list_mask = tf.sequence_mask(lengths=length_list, maxlen=7)
max_list_mask
Out[68]: <tf.Tensor 'SequenceMask_16/Less:0' shape=(2, 3, 7) dtype=bool>
max_list_mask.eval()
Out[69]:
array([[[ True, True, False, False, False, False, False],
[ True, True, True, False, False, False, False],
[ True, True, True, True, False, False, False]],
[[ True, True, True, False, False, False, False],
[ True, True, True, True, False, False, False],
[ True, True, True, True, True, False, False]]])
结论:根据列表的维度进行赋值,而非列表里面的数值,本案例为 2,3
如果交换一下列表里面的数据位置——
length_list2 = [ [3, 4, 5], [2, 3, 4]]
list_mask2 = tf.sequence_mask(lengths=length_list2)
list_mask2
Out[30]: <tf.Tensor 'SequenceMask_7/Less:0' shape=(2, 3, ?) dtype=bool>
list_mask2.eval()
Out[31]:
array([[[ True, True, True, False, False],
[ True, True, True, True, False],
[ True, True, True, True, True]],
[[ True, True, False, False, False],
[ True, True, True, False, False],
[ True, True, True, True, False]]])
max_list_mask2 = tf.sequence_mask(lengths=length_list2, maxlen=7)
max_list_mask2
Out[43]: <tf.Tensor 'SequenceMask_11/Less:0' shape=(2, 3, 7) dtype=bool>
max_list_mask2.eval()
Out[44]:
array([[[ True, True, True, False, False, False, False],
[ True, True, True, True, False, False, False],
[ True, True, True, True, True, False, False]],
[[ True, True, False, False, False, False, False],
[ True, True, True, False, False, False, False],
[ True, True, True, True, False, False, False]]])
维度没有发生变化,还是 2, 3
含有一个列表的列表——
length_list3 = [ [2, 3, 4] ]
list_mask3 = tf.sequence_mask(lengths=length_list3)
list_mask3
Out[34]: <tf.Tensor 'SequenceMask_8/Less:0' shape=(1, 3, ?) dtype=bool>
list_mask3.eval()
Out[35]:
array([[[ True, True, False, False],
[ True, True, True, False],
[ True, True, True, True]]])
max_list_mask3 = tf.sequence_mask(lengths=length_list3, maxlen=6)
max_list_mask3
Out[46]: <tf.Tensor 'SequenceMask_12/Less:0' shape=(1, 3, 6) dtype=bool>
max_list_mask3.eval()
Out[47]:
array([[[ True, True, False, False, False, False],
[ True, True, True, False, False, False],
[ True, True, True, True, False, False]]])
根据结果,维度是 1,3
参考资料:
https://wenku.baidu.com/view/d98d1c1640323968011ca300a6c30c225901f0f2.html
http://www.kaotop.com/it/29711.html