Description A zero-indexed array A of length N contains all integers from 0 to N-1. Find and return the longest length of set S, where S[i] = {A[i], A[A[i]], A[A[A[i]]], … } subjected to the rule below. Suppose the first element in S star
Description
A zero-indexed array A of length N contains all integers from 0 to N-1. Find and return the longest length of set S, where S[i] = {A[i], A[A[i]], A[A[A[i]]], … } subjected to the rule below.
Suppose the first element in S starts with the selection of element A[i] of index = i, the next element in S should be A[A[i]], and then A[A[A[i]]]… By that analogy, we stop adding right before a duplicate element occurs in S.
Example 1:
Output: 4
Explanation:
A[0] = 5, A[1] = 4, A[2] = 0, A[3] = 3, A[4] = 1, A[5] = 6, A[6] = 2.
One of the longest S[K]:
S[0] = {A[0], A[5], A[6], A[2]} = {5, 6, 2, 0}
Note:
分析
- 其实对于遍历过的数字,我们不用再将其当作开头来计算了,而是只对于未遍历过的数字当作嵌套数组的开头数字,
- 不过在进行嵌套运算的时候,并不考虑中间的数字是否已经访问过,而是只要找到和起始位置相同的数字位置,
- 然后更新结果res。
代码
class Solution {public:
int arrayNesting(vector<int>& nums) {
int n=nums.size();
int res=0;
vector<bool> visited(n,false);
for(int i=0;i<n;i++){
if(visited[i]){
continue;
}
res=max(res,solve(nums,i,visited));
}
return res;
}
int solve(vector<int>& nums,int start, vector<bool>& visited){
int i=start;
int cnt=0;
while(cnt==0||i!=start){
visited[i]=true;
i=nums[i];
++cnt;
}
return cnt;
}
};
参考文献
[LeetCode] Array Nesting 数组嵌套