当前位置 : 主页 > 编程语言 > python >

【智能优化算法-长鼻浣熊优化算法】基于长鼻浣熊优化算法求解单目标优化问

来源:互联网 收集:自由互联 发布时间:2022-09-29
1 内容介绍 【智能优化算法-长鼻浣熊优化算法】基于长鼻浣熊优化算法求解单目标优化问题附matlab代码 2 部分代码 %% % Coati Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solvin

1 内容介绍

【智能优化算法-长鼻浣熊优化算法】基于长鼻浣熊优化算法求解单目标优化问题附matlab代码

2 部分代码

%% 

% Coati Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems

% Knowledge-Based Systems

% Mohammad Dehghani, Zeinab Montazeri and Pavel Trojovský1

% Department of Mathematics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic


% " Optimizer"

%%

clc

clear

close all

%%


%%

Fun_name='F4'; % number of test functions: 'F1' to 'F23'


SearchAgents=30;                      % number of Coati (population members) 

Max_iterations=200;                  % maximum number of iteration

[lowerbound,upperbound,dimension,fitness]=fun_info(Fun_name); % Object function information

[Best_score,Best_pos,COA_curve]=COA(SearchAgents,Max_iterations,lowerbound,upperbound,dimension,fitness);  % Calculating the solution of the given problem using COA 


%%


display(['The best solution obtained by COA for ' [num2str(Fun_name)],'  is : ', num2str(Best_pos)]);

display(['The best optimal value of the objective funciton found by COA  for ' [num2str(Fun_name)],'  is : ', num2str(Best_score)]);

figure('Position',[284   214   660   290])

%Draw search space

subplot(1,2,1);

func_plot(Fun_name);

title('Test function')

xlabel('x_1');

ylabel('x_2');

zlabel([Fun_name,'( x_1 , x_2 )'])

grid off


%Draw objective space

subplot(1,2,2);

semilogy(COA_curve,'Color','b','linewidth',2)

title('Convergence curve')

xlabel('Iteration');

ylabel('Best flame (score) obtained so far');


axis tight

grid off

box on

legend('COA')

3 运行结果

【智能优化算法-长鼻浣熊优化算法】基于长鼻浣熊优化算法求解单目标优化问题附matlab代码_参考文献

【智能优化算法-长鼻浣熊优化算法】基于长鼻浣熊优化算法求解单目标优化问题附matlab代码_参考文献_02

【智能优化算法-长鼻浣熊优化算法】基于长鼻浣熊优化算法求解单目标优化问题附matlab代码_参考文献_03

4 参考文献

[1] Zeidabadi F A ,  Doumari S A ,  Dehghani M , et al. MLA:A New Mutated Leader Algorithm for Solving Optimization Problems[J]. 计算机、材料和连续体(英文), 2022(3):19.

部分理论引用网络文献,若有侵权联系博主删除。


上一篇:对react的装饰器+HOC(高阶组件)应用
下一篇:没有了
网友评论