目录
- 下面是Java正则表达式的语法字符:
- 正则表达式简单的匹配过程:
- (1) 基础匹配过程
- (2)贪婪模式
- (3)非贪婪模式
- (4)零宽度匹配过程
- 总结
正则表达式:定义字符串的模式,用来对字符串进行搜索、编辑或处理文本。
目前的正则表达式引擎大体上可分为不同的两类:DFA和NFA,而NFA又基本上可以分为传统型NFA和POSIX NFA。
DFA Deterministic finite automaton 确定型有穷自动机
NFA Non-deterministic finite automaton 非确定型有穷自动机
Java使用的是传统型NFA引擎。
下面是Java正则表达式的语法字符:
\
将下一字符标记为特殊字符、文本、反向引用或八进制转义符。例如, n匹配字符 n。\n 匹配换行符。序列 \\\\ 匹配 \\ ,\\( 匹配 (。
^
匹配输入字符串开始的位置。如果设置了 RegExp 对象的 Multiline 属性,^ 还会与"\n"或"\r"之后的位置匹配。
$
匹配输入字符串结尾的位置。如果设置了 RegExp 对象的 Multiline 属性,$ 还会与"\n"或"\r"之前的位置匹配。
*
零次或多次匹配前面的字符或子表达式。例如,zo* 匹配"z"和"zoo"。* 等效于 {0,}。
+
一次或多次匹配前面的字符或子表达式。例如,"zo+"与"zo"和"zoo"匹配,但与"z"不匹配。+ 等效于 {1,}。
?
零次或一次匹配前面的字符或子表达式。例如,"do(es)?"匹配"do"或"does"中的"do"。? 等效于 {0,1}。
{n}
n 是非负整数。正好匹配 n 次。例如,"o{2}"与"Bob"中的"o"不匹配,但与"food"中的两个"o"匹配。
{n,}
n 是非负整数。至少匹配 n 次。例如,"o{2,}"不匹配"Bob"中的"o",而匹配"foooood"中的所有 o。"o{1,}"等效于"o+"。"o{0,}"等效于"o*"。
{n,m}
m 和 n 是非负整数,其中 n <= m。匹配至少 n 次,至多 m 次。例如,"o{1,3}"匹配"fooooood"中的头三个 o。'o{0,1}' 等效于 'o?'。注意:您不能将空格插入逗号和数字之间。
?
当此字符紧随任何其他限定符(*、+、?、{n}、{n,}、{n,m})之后时,匹配模式是"非贪心的"。"非贪心的"模式匹配搜索到的、尽可能短的字符串,而默认的"贪心的"模式匹配搜索到的、尽可能长的字符串。例如,在字符串"oooo"中,"o+?"只匹配单个"o",而"o+"匹配所有"o"。
.
匹配除"\r\n"之外的任何单个字符。若要匹配包括"\r\n"在内的任意字符,请使用诸如"[\s\S]"之类的模式。
(pattern)
匹配 pattern 并捕获该匹配的子表达式。可以使用 $0…$9 属性从结果"匹配"集合中检索捕获的匹配。若要匹配括号字符 ( ),请使用""或者""或者""。
(?:pattern)
匹配 pattern 但不捕获该匹配的子表达式,即它是一个非捕获匹配,不存储供以后使用的匹配。这对于用"or"字符 (|) 组合模式部件的情况很有用。例如,'industr(?:y|ies) 是比 'industry|industries' 更经济的表达式。
(?=pattern)
执行正向预测先行搜索的子表达式,该表达式匹配处于匹配 pattern 的字符串的起始点的字符串。它是一个非捕获匹配,即不能捕获供以后使用的匹配。例如,'Windows (?=95|98|NT|2000)' 匹配"Windows 2000"中的"Windows",但不匹配"Windows 3.1"中的"Windows"。预测先行不占用字符,即发生匹配后,下一匹配的搜索紧随上一匹配之后,而不是在组成预测先行的字符后。
(?!pattern)
执行反向预测先行搜索的子表达式,该表达式匹配不处于匹配 pattern 的字符串的起始点的搜索字符串。它是一个非捕获匹配,即不能捕获供以后使用的匹配。例如,'Windows (?!95|98|NT|2000)' 匹配"Windows 3.1"中的 "Windows",但不匹配"Windows 2000"中的"Windows"。预测先行不占用字符,即发生匹配后,下一匹配的搜索紧随上一匹配之后,而不是在组成预测先行的字符后。
x|y
匹配 x 或 y。例如,'z|food' 匹配"z"或"food"。'(z|f)ood' 匹配"zood"或"food"。
[xyz]
字符集。匹配包含的任一字符。例如,"[abc]"匹配"plain"中的"a"。
[^xyz]
反向字符集。匹配未包含的任何字符。例如,"[^abc]"匹配"plain"中"p","l","i","n"。
[a-z]
字符范围。匹配指定范围内的任何字符。例如,"[a-z]"匹配"a"到"z"范围内的任何小写字母。
[^a-z]
反向范围字符。匹配不在指定的范围内的任何字符。例如,"[^a-z]"匹配任何不在"a"到"z"范围内的任何字符。
\b
匹配一个字边界,即字与空格间的位置。例如,"er\b"匹配"never"中的"er",但不匹配"verb"中的"er"。
\B
非字边界匹配。"er\B"匹配"verb"中的"er",但不匹配"never"中的"er"。
\cx
匹配 x 指示的控制字符。例如,\cM 匹配 Control-M 或回车符。x 的值必须在 A-Z 或 a-z 之间。如果不是这样,则假定 c 就是"c"字符本身。
\d
数字字符匹配。等效于 [0-9]。
\D
非数字字符匹配。等效于 [^0-9]。
\f
换页符匹配。等效于 \x0c 和 \cL。
\n
换行符匹配。等效于 \x0a 和 \cJ。
\r
匹配一个回车符。等效于 \x0d 和 \cM。
\s
匹配任何空白字符,包括空格、制表符、换页符等。与 [ \f\n\r\t\v] 等效。
\S
匹配任何非空白字符。与 [^ \f\n\r\t\v] 等效。
\t
制表符匹配。与 \x09 和 \cI 等效。
\v
垂直制表符匹配。与 \x0b 和 \cK 等效。
\w
匹配任何字类字符,包括下划线。与"[A-Za-z0-9_]"等效。
\W
与任何非单词字符匹配。与"[^A-Za-z0-9_]"等效。
\xn
匹配 n,此处的 n 是一个十六进制转义码。十六进制转义码必须正好是两位数长。例如,"\x41"匹配"A"。"\x041"与"\x04"&"1"等效。允许在正则表达式中使用 ASCII 代码。
\num
匹配 num,此处的 num 是一个正整数。到捕获匹配的反向引用。例如,"(.)\1"匹配两个连续的相同字符。
\n
标识一个八进制转义码或反向引用。如果 \n 前面至少有 n 个捕获子表达式,那么 n 是反向引用。否则,如果 n 是八进制数 (0-7),那么 n 是八进制转义码。
\nm
标识一个八进制转义码或反向引用。如果 \nm 前面至少有 nm 个捕获子表达式,那么 nm 是反向引用。如果 \nm 前面至少有 n 个捕获,则 n 是反向引用,后面跟有字符 m。如果两种前面的情况都不存在,则 \nm 匹配八进制值 nm,其中 n 和 m 是八进制数字 (0-7)。
\nml
当 n 是八进制数 (0-3),m 和 l 是八进制数 (0-7) 时,匹配八进制转义码 nml。
\un
匹配 n,其中 n 是以四位十六进制数表示的 Unicode 字符。例如,\u00A9 匹配版权符号 (©)。
正则的匹配过程,通常情况下都是由一个子表达式(可能为一个普通字符、元字符或元字符序列组成)取得控制权,从字符串的某一位置开始尝试匹配,一个子表达式开始尝试匹配的位置,是从前一子表达匹配成功的结束位置开始的。如果匹配到字符串某一位置时整个表达式匹配失败,那么引擎会使正则向前传动,整个表达式从下一位开始重新尝试匹配,依此类推,直到报告匹配成功或尝试到最后一个位置后报告匹配失败。
正则表达式简单的匹配过程:
代码为pattern为正则表达式对content进行匹配
(1) 基础匹配过程
public static void main(String[] args) { String content = "abc"; String pattern = "abc"; System.out.println(content.matches(pattern)); }
匹配过程:
首先由字符“a”取得控制权,由“a”来匹配“a”,匹配成功,控制权交给字符“b”;由于“a”已被“a”匹配,所以“b”从位置1开始尝试匹配,由“b”来匹配“b”,匹配成功,控制权交给“c”;由“c”来匹配“c”,匹配成功放回true。
(2)贪婪模式
public static void main(String[] args) { String content = "abc"; String pattern = "ab?c"; System.out.println(content.matches(pattern)); }
量词“?”属于匹配优先量词,在可匹配可不匹配时,会先选择尝试匹配,只有这种选择会使整个表达式无法匹配成功时,才会尝试让出匹配到的内容。这里的量词“?”是用来修饰字符“b”的,所以“b?”是一个整体。
匹配过程:
首先由字符“a”取得控制权,由“a”来匹配“a”,匹配成功,控制权交给字符“b?”;由于“?”是匹配优先量词,所以会先尝试进行匹配,由“b?”来匹配“b”,匹配成功,控制权交给“c”,同时记录一个备选状态;由“c”来匹配“c”,匹配成功。记录的备选状态丢弃。
public static void main(String[] args) { String content = "abd"; String pattern = "ab?c"; System.out.println(content.matches(pattern)); }
匹配过程:
首先由字符“a”取得控制权,,由“a”来匹配“a”,匹配成功,控制权交给字符“b?”;先尝试进行匹配,由“b?”来匹配“b”,同时记录一个备选状态,匹配成功,控制权交给“c”;由“c”来匹配“d”,匹配失败,此时进行回溯,找到记录的备选状态,“b?”忽略匹配,即“b?”不匹配“b”,让出控制权,把控制权交给“c”;由“c”来匹配“b”,匹配失败。此时第一轮匹配尝试失败。
正则引擎使正则向前传动,由位置1开始尝试匹配,由“a”来匹配“b”,匹配失败,没有备选状态,第二轮匹配尝试失败。
继续向前传动,直到所有尝试匹配失败,匹配结束。此时报告整个表达式匹配失败。
(3)非贪婪模式
public static void main(String[] args) { String content = "abc"; String pattern = "ab??c"; System.out.println(content.matches(pattern)); }
量词“??”属于忽略优先量词,在可匹配可不匹配时,会先选择不匹配,只有这种选择会使整个表达式无法匹配成功时,才会尝试进行匹配。这里的量词“??”是用来修饰字符“b”的,所以“b??”是一个整体。
匹配过程:
首先由字符“a”取得控制权,由“a”来匹配“a”,匹配成功,控制权交给字符“b??”;先尝试忽略匹配,即“b??”不进行匹配,同时记录一个备选状态,控制权交给“c”;由“c”来匹配“b”,匹配失败,此时进行回溯,找到记录的备选状态,“b??”尝试匹配,即“b??”来匹配“b”,匹配成功,把控制权交给“c”;由“c”来匹配“c”,匹配成功。
(4)零宽度匹配过程
所谓零宽断言,简单来说就是匹配一个位置,这个位置满足某个正则,但是不纳入匹配结果的,所以叫“零宽”,而且这个位置的前面或后面需要满足某种正则。
public static void main(String[] args) { String content = "abc"; String pattern = "^(?=[a-z])[a-z0-9]+$"; System.out.println(content.matches(pattern)); }
元字符“^”和“$”匹配的只是位置,顺序环视“(?=[a-z])”只进行匹配,并不占有字符,也不将匹配的内容保存到最终的匹配结果,所以都是零宽度的。
这个正则的意义就是匹配由字母或数字组成的,第一个字符是字母的字符串。
匹配过程:
首先由元字符“^”取得控制权,从开始位置开始匹配,匹配成功,控制权交给顺序环视“(?=[a-z])”;
“(?=[a-z])”要求它所在位置右侧必须是字母才能匹配成功,零宽度的子表达式之间是不互斥的,即同一个位置可以同时由多个零宽度子表达式匹配,所以它也是从开始位置尝试进行匹配,开始位置的右侧是字符“a”,符合要求,匹配成功,控制权交给“[a-z0-9]+”;
因为“(?=[a-z])”只进行匹配,并不将匹配到的内容保存到最后结果,并且“(?=[a-z])”匹配成功的位置是开始位置,所以“[a-z0-9]+”也是从开始位置开始尝试匹配的,“[a-z0-9]+”首先尝试匹配“a”,匹配成功,继续尝试匹配,可以成功匹配接下来的“b”和“c”,此时右侧已没有字符,这时会把控制权交给“$”;“$”成功匹配结束符,匹配成功。
总结
到此这篇关于Java中正则表达式匹配过程的文章就介绍到这了,更多相关Java正则匹配过程内容请搜索自由互联以前的文章或继续浏览下面的相关文章希望大家以后多多支持自由互联!