当前位置 : 主页 > 编程语言 > 其它开发 >

python 包之 multiprocessing 多进程教程

来源:互联网 收集:自由互联 发布时间:2022-05-30
python 必学之 multiprocessing 多进程 一、创建一个进程 实例化 Process 类创建一个进程对象 然后调用它的 start 方法即可生成一个子进程 from multiprocessing import Processdef func(s): print(s)if __name__
python 包之 multiprocessing 多进程教程 python 必学之 multiprocessing 多进程 一、创建一个进程
  • 实例化 Process 类创建一个进程对象

  • 然后调用它的 start 方法即可生成一个子进程

from multiprocessing import Process

def func(s):
  print(s)

if __name__ == '__main__':
  p = Process(target=func, args=('autofelix', ))
  p.start()
  p.join()

 

二、创建多个进程
from multiprocessing import Process

def func(s):
  print(s)

if __name__ == '__main__':
  process = [
  	Process(target=func, args=('1', ))
    Process(target=func, args=('2', ))
  ]
  
  [p.start() for p in process]
  [p.join() for p in process]

 

三、管道pipe进行进程间通信
  • Pipe(duplex=True):表示双工通信,也就是双向的,既可以接受也可以发送数据,默认为True

  • Pipe(duplex=False):表示单工通信,也就是单向的,只能进行接受或者发送数据

from multiprocessing import Process, Pipe

def func(conn):
  print('send a list object ot other side...')
  # 从管道对象的一端发送数据对象
  conn.send(['33', 44, None])
  conn.close()

if __name__ == '__main__':
  # 默认创建一个双工管道对象,返回的两个对象代表管道的两端,
  # 双工表示两端的对象都可以发送和接收数据,但是需要注意,
  # 需要避免多个进程或线程从一端同时读或写数据
  parent_conn, child_conn = Pipe()
  p = Process(target=func, args=(child_conn, ))
  p.start()
  # 从管道的另一端接收数据对象
  print(parent_conn.recv())
  p.join()

 

四、队列Queue进行进程间通信
  • 当向队列中放入的数据较大时,就会在join()处卡死

  • 为了避免这种情况,常的做法是先使用get()将数据取出来,再使用join()方法

  • 如果不这样处理,队列进程将不能正常终止,造成死锁情况

from multiprocessing import Process, Queue

def func(q):
  print('put a list object to queue...')
  # 向Queue对象中添加一个对象
  q.put(['33', 44, None])

if __name__ == '__main__':
  # 创建一个队列
  q = Queue()
  p = Process(target=func, args=(q, ))
  p.start()
  # 从Queue对象中获取一个对象
  print(q.get())
  p.join()

 

五、进程间同步
  • 使用锁保证进程间的同步操作

from multiprocessing import Process, Lock

def func(lc, num):
  # 使用锁保证以下代码同一时间只有一个进程在执行
  lc.acquire()
  print('process num: ', num)
  lc.release()

if __name__ == '__main__':
  lock = Lock()
  for i in range(5):
      Process(target=func, args=(lock, i)).start()

 

六、进程间共享数据
  • 使用共享内存的方式,共享值Value对象和数据Array对象

from multiprocessing import Process, Value, Array

def func(n, a):
  n.value = 3.333
  for i in range(len(a)):
      a[i] = -a[i]

if __name__ == '__main__':
  # 第一个参数d表示数据类型'double'双精度浮点类型
  num = Value('d', 0.0)
  # 第一个参数i表示数据类型'integer'整型
  arr = Array('i', range(6))
  p = Process(target=func, args=(num, arr))
  p.start()
  p.join()
  print(num.value)
  print(arr[:])

 

七、进程池
  • 创建一个 Pool 进程池对象,并执行提交给它的任务

  • 进程池对象允许其中的进程以不同的方式运行

  • 但是需要注意,Pool 对象的方法只能是创建它的进程才能调用

from multiprocessing import Pool
import time

def f(x):
    return x * x

if __name__ == '__main__':
    with Pool(processes=4) as pool:  # start 4 worker processes
      	# 在进程池中开启一个新的进程并执行 f 函数
        result = pool.apply_async(f, (10,))  # evaluate "f(10)" asynchronously in a single process
        print(result.get(timeout=1))  # prints "100" unless your computer is *very* slow
				
        # map会一直阻塞当前进程直到运行完可迭代对象中的所有元素,并返回结果。
        print(pool.map(f, range(10)))  # prints "[0, 1, 4,..., 81]"
				
        # imap是map方法的延迟执行版本,对于比较消耗内存的迭代,建议使用这个方法,
        it = pool.imap(f, range(10))
        print(next(it))  # prints "0"
        print(next(it))  # prints "1"
        print(it.next(timeout=1))  # prints "4" unless your computer is *very* slow

        result = pool.apply_async(time.sleep, (10,))
        print(result.get(timeout=1))  # raises multiprocessing.TimeoutError

 

【来源:国外高防服务器 http://www.558idc.com/stgf.html 欢迎留下您的宝贵建议】
上一篇:Eolink 全局搜索介绍【翻译】
下一篇:没有了
网友评论