当前位置 : 主页 > 编程语言 > python >

【Numpy总结】第三节:Numpy创建数组

来源:互联网 收集:自由互联 发布时间:2022-10-14
一、标准数组的创建 1.1 numpy.empty 创建空数组 用来创建一个指定形状(shape)、数据类型(dtype)且未初始化的数组;由于未初始化,所以数组中的数据是随机的; numpy.empty(shape, dtype

一、标准数组的创建

1.1 numpy.empty 创建空数组

用来创建一个指定形状(shape)、数据类型(dtype)且未初始化的数组;由于未初始化,所以数组中的数据是随机的;

numpy.empty(shape, dtype = float, order = 'C')

参数 描述 shape 数组形状 dtype 数据类型,可选 order 有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。<br>一般情况下不必关注

举例:

a = np.empty((4,3),dtype=int) print(a) # 每次输出都不同,因为没有初始化 # [[-958363344 464 -958381568] # [ 464 -958387104 464] # [-958380912 464 -958380224] # [ 464 -958380224 464]]

1.2 numpy.zeros 创建0数组

用来创建一个指定形状(shape)的数组,并全部初始化为0 举例:

a = np.ones((4,3)) print(a) # [[1 1 1] # [1 1 1] # [1 1 1] # [1 1 1]]

1.3 numpy.ones 创建1数组

用来创建一个指定形状(shape)的数组,并全部初始化为1 举例:

a = np.zeros((4,3)) print(a) # [[0 0 0] # [0 0 0] # [0 0 0] # [0 0 0]]

二、创建一般数组

2.0 利用list 创建数组 numpy.array

格式为: numpy.array(object, dtype=None) ,其中:

参数 描述 object 创建的数组的对象,可以为单个值,列表,元胞等。 dtype 数据类型,可选

举例:

array = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) print(array) # [0 1 2 3 4 5 6 7 8 9] print(array.dtype) # int32

2.1 利用list 创建数组 numpy.asarray

格式为: numpy.asarray(a, dtype = None, order = None) ,其中:

参数 描述 a 任意形式的输入参数,可以是: 列表, 列表的元组, 元组, 元组的元组, 元组的列表,多维数组 dtype 数据类型,可选 order 可选,有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。

举例:

a = [1,3,1,5,4] b = np.asarray(a) print(type(a)) # <class 'list'> print(type(b)) # <class 'numpy.ndarray'>

2.2 利用可迭代对象创建数组 numpy.fromiter

格式为:numpy.fromiter(iterable, dtype, count=-1) ,其中:

参数 描述 iterable 可迭代对象 dtype 返回数组的数据类型 count 读取的数据数量,默认为-1,读取所有数据

举例:

list=range(5) it=iter(list) x=np.fromiter(it, dtype=float) print(x)

2.3 利用数值范围创建数组 numpy.arange

格式为:numpy.arange(start, stop, step, dtype) ,其中:

参数 描述 start 起始值,默认为0 stop 终止值(不包含) step 步长,默认为1 dtype 返回ndarray的数据类型,如果没有提供,则会使用输入数据的类型。

举例:

a = np.arange(10) print(a) # 输出:[0 1 2 3 4 5 6 7 8 9] b = np.arange(10,20,2) print(b) # 输出:[10 12 14 16 18]

2.4 利用数值范围创建数组 numpy.linspace

格式为:np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None) ,其中:

参数 描述 start 序列的起始值 stop 序列的终止值,如果endpoint为true,该值包含于数列中 num 要生成的等步长的样本数量,默认为50 endpoint 该值为 true 时,数列中包含stop值,反之不包含,默认是True。 retstep 如果为 True 时,生成的数组中会显示间距,反之不显示。 dtype ndarray 的数据类型

举例:

a = np.linspace(10,20,5,endpoint=False) # 从10开始,20结束,一共产生5个数字,不包含20 print(a) # 输出:[10. 12. 14. 16. 18.] b = np.linspace(10,20,5,endpoint=True) print(b) # 输出:[10. 12.5 15. 17.5 20. ]

三、创建随机数组

3.1 创建整数随机数组:np.random.randint

格式为 : np.random.randint(0, 100, (3, 4))

在使用random之前,可以通过 np.random.seed(666) 来设置随机种子,这一点与Python一致;

举例:

a = np.random.randint(0, 100, (3, 4)) print(a) # 输出为: # [[92 58 18 32] # [ 4 87 81 1] # [12 11 13 68]]

3.2 创建浮点型随机数组

只要在整数的基础上除以整数即可,例如需要创建一个取值范围在0,1之间,精度为0.01的浮点型数组,可以使用如下方法:

a = np.random.randint(0, 100, (3, 4)) b= a/100 print(b) # 输出为: # [[0.05 0.48 0.72 0.95] # [0.68 0.78 0.22 0.98] # [0.17 0.45 0.7 0.85]]
上一篇:celery为不同异步任务分配不同worker
下一篇:没有了
网友评论