使用drop函数删除dataframe的某列或某行数据: drop(labels, axis=0, level=None, inplace=False, errors='raise') -- axis为0时表示删除行,axis为1时表示删除列 常用参数如下: import pandas as pdimport numpy as n
使用drop函数删除dataframe的某列或某行数据:
drop(labels, axis=0, level=None, inplace=False, errors='raise') -- axis为0时表示删除行,axis为1时表示删除列
常用参数如下:
import pandas as pd import numpy as np data = {'Country':['China','US','Japan','EU','UK/Australia', 'UK/Netherland'], 'Number':[100, 150, 120, 90, 30, 2], 'Value': [1, 2, 3, 4, 5, 6], 'label': list('abcdef')} df = pd.DataFrame(data) print("df原数据:\n", df, '\n') out: df原数据: Country Number Value label 0 China 100 1 a 1 US 150 2 b 2 Japan 120 3 c 3 EU 90 4 d 4 UK/Australia 30 5 e 5 UK/Netherland 2 6 f
删除单列:
print(df.drop('Country', axis = 1)) out: Number Value label 0 100 1 a 1 150 2 b 2 120 3 c 3 90 4 d 4 30 5 e 5 2 6 f
删除多列:
print(df.drop(['Country','Number'], axis = 1)) out: Value label 0 1 a 1 2 b 2 3 c 3 4 d 4 5 e 5 6 f
删除单行:
print(df.drop(labels = 1, axis = 0)) out: Country Number Value label 0 China 100 1 a 2 Japan 120 3 c 3 EU 90 4 d 4 UK/Australia 30 5 e 5 UK/Netherland 2 6 f
删除多行:
print(df.drop(labels = [1,2], axis = 0)) out: Country Number Value label 0 China 100 1 a 3 EU 90 4 d 4 UK/Australia 30 5 e 5 UK/Netherland 2 6 f
使用range函数删除连续多行:
print(df.drop(labels = range(1,3), axis = 0)) out: Country Number Value label 0 China 100 1 a 3 EU 90 4 d 4 UK/Australia 30 5 e 5 UK/Netherland 2 6 f
到此这篇关于pandas dataframe drop函数介绍的文章就介绍到这了,更多相关pandas dataframe drop 内容请搜索自由互联以前的文章或继续浏览下面的相关文章希望大家以后多多支持自由互联!